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Learning Objectives 

1. Introduce the latest development in brachytherapy 

robotics.  

2. Describe supporting laboratory investigations and 

clinical studies.  

3. Outline future research directions 

 



Conventional Prostate Seed Implant Brachytherapy 

Fixed 
template 

•  Fixed template – limited maneuverability  
•  PAI – needle angulation difficult 
•  Consistency, accuracy, efficiency – techniques & human factors 

Needle 
angulation 

Fatigue & 
exposure 

Prostate 

Pubic Arch 

http://www.emedicine.com/cgi-bin/foxweb.exe/makezoom@/em/makezoom?picture=%5Cwebsites%5Cemedicine%5Cmed%5Cimages%5CLarge%5C811med3147-03.jpg&template=izoom2
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What is a “ROBOT”? 

“A robot is a reprogrammable multi-functional 

manipulator designed to move materials, parts, 

tools, or specialized devices, through variable 

programmed motions for performance of a 

variety of tasks.”  



ROBOTs 

Industrial robots  

KUKA robot 
(cyberknife) 

da Vinci  

Medical robots  

http://www.google.com/imgres?imgurl=http://futurefeeder.com/wp-content/IImages/daVinci1.jpg&imgrefurl=http://futurefeeder.com/index.php/archives/2005/07/07/da-vinci-robot-surgery-system/&h=331&w=450&sz=25&tbnid=FGo5woB1fMoJ::&tbnh=93&tbnw=127&prev=/images?q%3Dda%2Bvinci%2Brobot%2Bphoto&hl=en&sa=X&oi=image_result&resnum=1&ct=image&cd=1


Robotic IGBT System 

Objectives: 
•  Increase accuracy and consistency of needle placement and seed  
    delivery 
•  Increase avoidance of critical structures (urethra, pubic bone, rectum,  
    etc.) 
•  Detect tissue heterogeneities and deformation via force sensing and     
    imaging feedback  
•  Update dosimetry after each needle is implanted  
•  Reduce tediousness and assist clinicians 
•  Reduce trauma and edema 
•  Reduce radiation exposure 
•  Reduce learning curve 
•  Reduce OR time 

IGBT: Image-Guided BrachyTherapy 



The EUCLIDIAN Robotic System for IGBT 

o EUCLIDIAN design & development 
– Positioning Module (3DOF cart, 6DOF platform) 
– Surgery Module (2DOF US driver, 3DOF gantry, 2DOF needle driver) 

• Robot workspace 
• In vivo force-torque & motion data collection  
• Needle bucking expt. 
• Force-reduction expt. 
• Reduction of tissue deformation expt. 
• Reduction of needle bending expt. 
• Improved prostate stabilization expt. 
• Friction reduction – needle coating expt. 
• Extended Kalman Filter for needle steering simulation & expt. 

o EUCLIDIAN architecture 
o EUCLIDIAN software 
o Dosimetric planning 
o Robotic IGBT procedures  
o EUCLIDIAN performance 

 



Functional Requirements: 

•  Provision for reverting to conventional manual brachytherapy method at any 
time 

•  Quick and easy disengagement in case of emergency 

•  Improved of prostate immobilization 

•  Provision for periodic quality assurance 

•  Provision for reviewing and approving the motion plan and seed delivery 

•  Ability to modulate needle velocity by automatic feedback control 

•  Provision for needle tracking and seed detection 

•  Updating implant plan at any desired time 

•  Steering of the needle by automatic feedback control 

•  Visual/haptic force feedback during needle insertion 

•  Teach mode to simulate force/velocity patterns of expert practitioners 

•  Ease of operation and safety for the patient and OR environment 



Workspace in the OR 



In Vivo Force Measurements 

Hand-held adapter  
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Force/torque and position data collection during actual 
brachytherapy procedure in the OR  
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Patient #1, 17G Needle 

Z-Forces 
(OR Data taken during Brachytherapy, 02-01-05)
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Prostate Deformation 

      (a) Prior to capsule puncture                      (b) During capsule puncture                         (c) After full insertion 
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Force & Target Deflection 



Rotational Velocity Modulation 

Puncture Force of 18G DT Needle in Liver
Vel = 5mm/s
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Robot Components for Brachytherapy 

Hardware: 
• Linkage/ mechanism 

• Motors/ actuators 

• Encoders/ sensors 

• TRUS (CT, MR) 

• Image acquisition board 

• Industrial computer 

• Power supply, amplifier 

Software: 
• Patient information handling  

• Image acquisition 

• Delineation of anatomic structures  

• Dosimetric planning 

• Needle tracking, seed detection  

• Motion control and coordination 

• 2D-3D visualization 

• Position, velocity, force feedback 



EUCLIDIAN OVERVIEW 



7 DOF Surgery 
Module 
 

6DOF Supporting 
Platform 
 

3 DOF 
Cart 
 

Surgery Module 
 



EUCLIDIAN in OR Setup 



EUCLIDIAN - US Probe Driver 

•  Decoupled translation & rotation 

•  Motorized as well as manual 

•  Improved stabilization    

•  Provision for conventional method 



EUCLIDIAN – Needle Insertion & Seed Delivery 

•  3 motorized motion 

•  Optical encoders 

•  Positive drive 
•  Cannula rotation 

•  3 Force sensors 

•  Sterilizable seed passage 



EUCLIDIAN – Gantry Robot 

Ball 
Screw 

 

Encoder 
 

Optical 
Encoder 

 

Motor 
 

Motor 
 

Ball Screw 
 

X Motion 
Platform 

 

Y Motion 
Platform 

 

Timing Belt 
 

Timing Belt 
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•  Motorized x & y motion 

•  Angulation – up & down 

•  Optical encoders 

•  Positive drive – timing belt 



      

Tasks: 

1. Patient record handling 

2. Image acquisition 

3. Model building (prostate, urethra, pubic bone, rectum) 

4. Dose distribution planning 

5. 3D visualization 

6. Real-time monitoring 

7.  Loop back to #2, 3 or 4 if requested by user 

 

EUCLIDIAN Software 



EUCLIDIAN Software 

      

o Tasks: 

– Patient record 
handling 

– Image 
acquisition 

– Model building 
(prostate, 
urethra, pubic 
bone, rectum) 

– Dose 
distribution 
planning 

– 3D 
visualization 

– Real-time 
monitoring 

 

 



EUCLIDIAN Software 
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– Model building 
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– Real-time 
monitoring 

 

 

•Transverse, para-sagittal, and coronal views of 
the compounded volume 

•Seamless spline interpolation 

•Depends on surgeon experience 



EUCLIDIAN Software 
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Kinematic calibration 

Kinematic calibration determines 
 
1)System resolution  -  the smallest incremental movement that the  
                robot can physically perform 
2)Repeatability           - a measure of the ability of the robot to move  
                back to the same position and orientation  
3)Accuracy       -  the robot’s ability to precisely move to a desired 
                        position in 3D space.  

Generalized coordinates for Needling 
module  



Kinematic calibration - procedure 

1) DH model and table definition for robotic 
system,  

2) Matrix transformation, 
3) Definition of composite matrices 
4) Direct kinematics solution, 
5) Inverse kinematics solution, 
6) Definition of robot initial position,  
7) Calculation of position error and 
8) Error correction method  
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Imaging Calibration I – before image 
calibration 

  Imaging Calibration II – after image 
calibration 

Imaging calibration 



Mutual (overall) calibration 

Overall Calibration I – before   Overall Calibration II – after 



Calibration Results 

Accuracy: translation - 0.05mm  
                  rotation       - 0.1deg 

Probe driver 

Measured value Measured value 

Range ± 90 deg         Parallelism Axes Z and X

Accuracy 0.1  mm Accuracy (Z) 0.15 mm

Repeatability ± 0.03 deg Range     (Z) 228.6 mm

Repeatability 
(Z)

0.03 mm

Accuracy (X) 0.05 mm

Range     (X) 228.6 mm

Repeatability 
(X)

0.03 mm

Table 1:  US rotation performance

Table 2:  US translation 
performance - parallelism



The fiducial error for images is less than 0.1mm 
 in x and y image coordinates. 

Calibration Results 

Translation movements precision stylet and cannula are in the range      
   of 0.03-0.08mm 
Lateral and vertical precision for gantry is 0.03mm 
. 

Needling  
mechanism 

Measured value Measured value Measured value

Parallelism Axe Y Parallelism Axes Z and X Accuracy 0.03 mm

Accuracy (Z) 0.15 mm Accuracy (Z) 0.15 mm Speed ± 0.01   rev/s

Range     (Z) 101.6 mm Range     (Z) 279.4 mm

Repeatability (Z) 0.03 mm Repeatability 
(Z)

0.03 mm

Accuracy (X) 0.18 mm

Range     (X) 279.4 mm

Repeatability 
(X)

0.03 mm

Measured value

Parallelism Axes Z and X

Accuracy (Z) 0.15 mm

Range     (Z) 279.4 mm

Repeatability 
(Z)

0.03  mm

Accuracy (X) 0.18 mm

Range     (X) 279.4 mm

Repeatability 
(X)

0.03 mm

Table 1 Gantry vertical movement

Table 2: Gantry lateral movement 
performance

Table 4:  Gantry lateral 
movement performance

Table 3: Cannula rotation 



Calibration Test -  Seed Deposition 

Assessment of the deposited seeds revealed that the accuracy (relative error) 
of seed placement is  

0.15mm (SD=0.15mm) in x,  
0.13mm (SD=0.11mm) in y 
0.11mm (SD=0.11mm) in z 

The 3D (Euclidean) rms error is 0.227 mm. 

Seeds deposited into PVC phantom  
(lateral, frontal and top view) 



EUCLIDIAN Operation 

Homing Procedure Seed Delivery 



Some pertinent features of EUCLIDIAN 
 
 All the hardware and software are designed and developed in house 
 Fully automated ultrasound-based IGBT system; however, at any time the physician 

can takeover the control using a teach/user-pendent 
 9dof positioning module – 3dof cart and 6dof platform motorized vertical lift (y), 

electro-magnetic locks on x, y and z axes, 3dof rotation has mechanical locking 
arrangement 

 Motorized 7dof surgery module 
 No physical template required  
 3 force sensors – to detect pubic arch interference (PAI), to confirm seed delivery, to 

detect needle deviation and bending, and potentially to sense tumor foci 
 Can cover 62mm x 67mm surgical area; 100 angulation 
 PID controller and sensor data acquisition algorithm 
 Dosimetric planning, 3D visualization, needle tracking, seed detection in software 
 Needle and seed passages are sterilizeable, other parts are easy to clean and 

decontamination 
 Provision for quick manual takeover (if required) 
 Preliminary results reveal seed delivery accuracy of 0.23mm 



Multi-Channel Robotic System 



MRDI (Multichannel Robot-assisted Delivery and Intervention) 

Needle 

Miniature 
spur gears 

Template DC motor 

Stylet guide 

Bevel gear 
Timing belt 

Seed 
cartridge 

SEED APPLICATOR 

NEEDLE ADAPTER 



MRDI (Multichannel Robot-assisted Delivery and Intervention) 
 

Connection 
board 

Rotary needle 
adapter 

Mounting & driving 
mechanism 

Surgical XY 
carrier Seed 

applicator 

DC servo 
motors 



MRDI (Multichannel Robot-assisted Delivery and Intervention) 

TRUS driving 
mechanism 

Rotary needle 
adapter 

Surgical XY 
carrier 

TRUS probe 



Tumor Sensing Study 



OBJECTIVE 

 To develop a real-time tissue sensing strategy by analyzing 
needle insertion forces combined with patient-specific criteria 

• Detect tumor foci “JIT” for targeted therapy 

• Maximize use of data that can be gathered during needle 
interventions under robotic assistance (e.g. during 
prostate brachytherapy) 



HYPOTHESIS 

 Tissue mechanical heterogeneities of tumor can be 
distinguished from those of normal variants (glandular, 
fibromuscular tissues) by accurate force-torque 
measurements during needle incursion 



EVIDENCE SUPPORTING THE HYPOTHESIS 

 Variations in stiffness between tumor and normal tissue [1], 
as well as between patients [2] 

 Basis of tissue elastography imaging  
 Diseased tissues: changes in tissue composition, consistency, 

elasticity and stiffness 

 DRE, BSE …  
 Necrotic regions – potentially requiring selective, localized 

dose escalation  
 

 
1. V. Jalkanen, B.M. Andersson, A. Bergh, B. Ljungberg, and O.A Lindahl., “Prostate tissue stiffness as measured with a resonance 
sensor system: a study on silicone and human prostate tissue in vitro”, Medical & Biological Engineering & Computing, 44 (7), 593-603 
(2006). 
2. V. Jalkanen, “Resonance Sensor Technology for Detection of Prostate Cancer”, Department of Applied Physics and Electronics, Umeå 
University, Umeå, Sweden (2006) 



PATIENT-SPECIFIC FACTORS 

 Age 

 Ethnicity 

 BMI 

 Prostate volume 

 Prostate density 

 Gleason score 

 PSA 

 Clinical stage 



METHOD: Patient-Specific Factors Modeling 

 Regression model: Baseline mean force in normal tissue  
 
 
 

  Tumor detection model: threshold force in tumor 
 
 
 

 Optimize diagnostic power 
 Objective: Max  

     : area under curve (AUC) of ROC.  
 Sequential Quadratic Programming method 

t bF F= + ∆
  

{( ), , 0,1, 2}il i ih iβ β β β β∈Φ = ≤ ≤ =F

1F

Discriminator: sensitivity vs. specificity, 

i.e. ROC analysis  
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N = statistically significant terms 



MATERIAL AND METHODS 

 23 patients who underwent radical prostatectomy 
enrolled in IRB-approved clinical study with informed 
consent 

 Prostatectomy sample was brought to the research 
lab within 10 min of complete resection 

 The prostate was placed into a pre-prepared PVC 
phantom 

 Two stabilization needles were used to mimic the 
effect during brachytherapy procedure 



MATERIAL AND METHODS (cont.) 

 18-gauge diamond tip brachytherapy needles (Mick 
Radio-Nuclear Instruments, Inc., NY)  

 6DOF robotic system equipped with 6DOF Force-Torque 
sensor (Nano17®, ATI Industrial Automation, NC)  

 Insertion speed 10 mm/s; apex to base 

 Needle progression into the prostate and 3D deformation 
were recorded in 2 orthogonal planes simultaneously 
under ultrasound (GE LOGIQ-9, model 2404587, 
Milwaukee, WI; Acuson model 128xP, Mountain View, CA) 

 



Real-time Prostate Cancer Detection (needle insertion force) 

Needle insertion force experiment with 
Human Prostate (n=23) 

Histopathology 



MATERIAL AND METHODS (cont.) 

 10 locations in three zones 
(peripheral, central and 
transitional) of the prostate  

 Pathological analysis: 

 4 mm sections through 
the prostate 

 Needle tracks identified 

 Histology reported at 
pre-selected levels 
from apex to base 
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Patient case#5   Level I (Apex) Level III (midial) Level V (medial) Level IX (base) 

xyz abcd 1 
G(V, minute 

CA)+FM(5:5)  
BPH+FM(8:2) G+FM(4:6) SV+G+FM(1:4:5) 

56Y   2 G+FM (5:5) G+FM(5:5) G+FM(5:5) G+FM(6:4) 

43 gms   3 dilated G +FM (7:3) G+FM(7:3)) G+FM(3:7) G(dilated)+FM (5:5) 

4.4 x 5 x 2.9 (cm)*   4 CA+G+FM(3:2:5) CA+FM(8:2) G+FM(2:8) G+FM(pact) (4:6) 

CA: 3+3=6/10   5 CA+BPH+FM (4:3:3) CA+FM(2:8) G+FM(2:8) G+FM(pact) (4:6) 

11 sections   6 G+FM(4:6) FM(10) G+FM(2:8) G+FM (4:6) 

    7 CA+FM (5:5)  CA (10) CA+G+FM(1:2:7) SV+G+FM(1:4:5) 

    8 G+FM(4:6) G+FM(5:5) G+FM(4:6) 
G(dilated with focal PIN) 

+FM(6:4) 

    9 CA+G+FM(4:2;4) 
BPH+G+FM(3:2:

5) 
G+FM(3:7) BPH+G+FM(pact) (2:3:5) 

    10 CA+G+FM(2:4:4) FM(10) G+FM(2:8) G+FM(4:6) 

Key: 

SV=seminal vesicle; G=Gland;  FM=fibromuscular tissue of prostate; 

CA=adenocarcinoma of prostate;  G(V)=Glands near Verumountanum. 



MATERIAL AND METHODS (cont.) 
 

 Pathology data used as ground truth 
 
 Data from ~half of the study patients were used to optimize the 

model 
 

 Data from the remaining patients were used to test/validate the 
model 
 ROC analysis: Area under the curve (AUC) used as 

measure of diagnostic power 
 

 Selection of patients for modeling: factorial design 



RESULTS 

Fz in Transitional Zone of Human Prostate 
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RESULTS: Force Analysis 

 Needle insertion force: cutting force + visco-elastic friction force 
 
Variation of the forces : indicator of tissue composition variability 
 
 Fc > Fn : 0.7N ~ 2.2N 



RESULTS: Patient-specific Factors  

 Patient-specific factors 
Start with all terms in constructing the model:  
 patient age, ethnicity, BMI, clinical stage of cancer, Gleason 

score, prostate volume, prostate density and PSA  
 Backward stepwise regression  

 p value: stepwise elimination of least significant terms in model  
 Multicolinearity: Variance inflation factors (VIF) 
 Autocorrelation of model residuals: Durbin-Watson number 

 Significant factors: prostate density and PSA 
 Higher density and higher PSA value tend to predict larger 

insertion forces  



RESULTS: Model Validation 

 Model tuning: 10 patients 
 (x1:density, x2:PSA)  
 max(AUC)=0.80 

1 2-0.06-0.06 -0.175bF x x=

 Model validation: 11 patients     

 AUC=0.90  
 
 classifier 1.7:  sensitivity 
100%,  specificity 76% 
 classifier 1.9:  sensitivity 
86%, specificity 79% 



 International Collaboration 
                               

Centre for Advanced Mechanisms and Robotics 

School of Mechanical Engineering 

Tianjin University 

Division of Medical Physics, Department of Radiation Oncology 

Thomas Jefferson University 

2013 



a. Mechanism Design 
b. Control System Design 
c. Machinability Research 
d. Reliability Analysis 

(2) Ultrasound-guided surgical robot 

a.  Introduction on robot 
b. Treatment Planning Software (TPS) Design 
 

 
 

 
 
 
 

 
 

(3) Needle-tissue interaction 

a. Tissue-equivalent material preparation 
b. Needle-tissue interaction forces investigation 

(1) MRI-guided surgical robot 



(1) MRI-guided surgical robot 
a. Mechanism Design: The first generation of the robot 
 

 

 

 

 

 

 

 

 

 

Surgical needle 
Ultrasonic motor 

Optical encoder  MRI-compatible cylinder   
Fig.1 Virtual prototype of the surgical robot Fig.2 Physical prototype of the surgical robot 
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(1) MRI-guided surgical robot 
a. Mechanism Design: The second generation of the robot 

 
 

 

 

 

 

 

 

 

 

 

Fig.3 Virtual prototype of the surgical robot 

Screw 1 

Screw 2 

Screw 3 

Screw 5 

Screw 4 

Fig.4 Physical prototype of the surgical robot 

Ultrasonic 
motor 



(1) MRI-guided surgical robot 
a. Mechanism Design：The third generation of the robot 

 
 

 
 
 
 
 
 
 

 
 Fig.5. Virtual prototype of the third generation of the 

surgical robot 

1-base, 2,17-bracket, 3,19-bearing end plate, 4,22-gearwheel, 5-gear shaft, 6,16-motor base, 7,15,28-ultrasonic 
motor, 8,14-pinion, 9-cover, 10,18,23-bearing pedestal, 11,20-bearing, 12, 25-slider, 13-transmission wire, 21-
puncture needle(end effector), 24,29-guiding bar, 26, 27-needle guards 



(1) MRI-guided surgical robot 

b.  Control System Design 
 

 
 
 
 
 
 
 

 
 

Air source On/off valves Tubes Cylinders Robot 

MRI-room 

US motor 

US motor 
Controller 

Encoder 

PLC PC 

Optical 
 Decoder 

MRI-scanner 

Shielded 
Cable 

Pressure 
Sensors 

Fig.6. Flow diagram the control system  



Fig.7. Pneumatic system Fig.8. Electrical system 

(1) MRI-guided surgical robot 
b.  Control System Design 
 

 
 
 
 
 
 
 

 
 

Pneumatic source 

On-off valve (X8) 

PLC 

Decoder 



(1) MRI-guided surgical robot 

b.  Control System Design 
 

 
 
 
 
 
 
 

 
 

L=2m 

L=8m 

L=14m L=16m 

L=18m 
L=20m 

Fig.9. Experimental setup on different 
length tubes. 

Fig.10. Experimental results 

L=2m 



(1) MRI-guided surgical robot 

c. Machinability Research 
 
 

 
 
 
 
 
 
 

 
 

                      (a) Experimental setup                                 (b) Experimental results  

Fig.11.  Milling force experiment  

Dynamometer 
Vertical Machining Center 



(1) MRI-guided surgical robot 

c. Machinability Research 
 
 

 
 
 
 
 
 
 

 
 

                      (a) Experimental setup                                      (b) Experimental results  

Fig.12. surface roughness experiment 

Roughmeter 



(1) MRI-guided surgical robot 
d.  Reliability Analysis 
 

 
 
 
 
 

 
 

 
 

  Fig.13. FEM analysis of the surgical robot 
 

  Fig.14. Relation curves between reliability 
and reliability index ²   in 2D 

.  

  Fig.15. Response surface of maximum 
deformation  

.  

      Fig.16. Sample robot based 
 on optimization 



(2) Ultrasound-guided surgical robot 

Fig.17. Ultrasound-guided surgical robot  



(3) Needle-tissue interaction 
a. Tissue-equivalent material preparation   
 

 

Reverse  Engineering Image  PVA Material 
Preparation  Rapid  Prototyping   

Artificial 
Organ  

Fig. 18. The preparation process of the artificial organ  

Scanning Electron Microscope Uniaxial tensile test setup 



Fig. 19. The stress-strain diagram used to compare biomechanical properties 
of PVA materials and porcine kidney tissue 

 

(a) (b) 



 Morphology characterization 
 

Fig. 22.The SEM images of 
 porcine liver  

Fig. 21. The SEM images of different 
 cross-linking cycles 

 

a. Tissue-equivalent material preparation 
 

 

Fig. 20. The SEM images of different 
 NaCl concentrations 

 

Fig. 23.The SEM images of 
 porcine kidney  



b. Needle-tissue interaction forces investigation 
 

(3) Needle-tissue interaction 

 Force modeling for needle insertion 
 
 
 
 
 

Fig.24. Modified Winkler’s foundation model Fig.25. The sketch of the contact model 



b. Needle-tissue interaction forces investigation 
 

(3) Needle-tissue interaction 

 Experimental  setup  
 

 
 

  
 

 
 

(a) 1 DOF experimental setup 
for needle insertion 

               (b) 6 DOF F/T sensor and the 
              PVA phantom 

Fig.26 Experimental setup for needle-tissue interaction forces 



b. Needle-tissue interaction forces investigation 
 

(3) Needle-tissue interaction 

 Experiment results 
 

 
 

 
 

Fig.27 . Forces versus time curve for  
needle insertion 

Fig.28 . The stiffness force phantom 
puncture of the capsule 

Fig.29. The friction model 
predicted force and the 
measured force 
  

Fig.30. The needle insertion force  
model is compared to interaction force 
on PVA phantom.  



b. Needle-tissue interaction forces investigation 
 

(3) Needle-tissue interaction 

 Trajectory planning 
 

 
 

 
 
 Fig.31. The  dynamic FEA model of  prostate  

    (a)                            (b) 

Fig.33. Trajectory planning result 
considering deformation 
 

Fig.32. Trajectory planning result without 
considering deformation with a sphere 
target and cylinder obstacle. 
 



Curved and Smart (Active) Needles 

Thomas Jefferson University 

Temple University 

Case Western Reserve University 



Ryu, PhD Thesis, 2012 

(c) Smart (active) needle steering 

Needle Steering Techniques 



Rectilinear and Curvilinear Techniques for Prostate 
Brachytherapy 

(a) Conventional rectilinear 
approach. 

(b) Curvilinear conformal 
smart needle insertion. 

Podder et al., MedPhys 2012 



Dose Distribution in Rectilinear Technique 

A Representative 
Case 



Dose Distribution in Curvilinear Technique 

A Representative 
Case 



 Conventional rectilinear implantation (dotted lines)  
 Proposed curvilinear implantation (solid lines) 

A Representative 
Case 

DVH for Rectilinear vs. Curvilinear Techniques 



Rectilinear and Curvilinear Techniques for Prostate 
Brachytherapy 

20 patient PSI cases 



Curvilinear vs. Rectilinear Approach for PSI 

o Small puncture area 

o Accurate needle placement 

o Improved dose distribution 

o Better sparing of OARs 

o Less needles, seeds 

o Expected less traumas 

o Expected reduction of toxicities 

 



Curved Needles for Surgical Procedures 



Passage for needle 

Smart (active) needle 

• Distributed actuation (SMA, 
piezoelectric, magnetic, etc..) 

• Distributed sensors (EM, 
optical, imaging, F/T, etc..) 

• Robotic 
(mechanized) 
interface 

• Closed-loop 
feedback 
controller 

• Planning & 
control computer 

• Interface with 
clinician 

Concerned gland 
(prostate) 

Needle 

Podder, UHCMC, April 2013 



Curved Needle vs. Smart (active) Needle 

Curved needle: 

o Fixed geometrical configuration  
–  rigid body 

–  less conformity 

–  challenging for insertion in organ 

–  actuation from proximal end only 

– limited sensory feedback 

Smart (active) needle: 

o Variable controlled configuration  
–  flexible configuration 

–  distributed actuation 

–  good geometric conformity 

– distributed sensory system (EM, imaging, F/T, optical, etc.) 

– distributed actuation and control  



Modeling and Control of Pre-curved Needle Continuum 

The figures (from top to bottom) show- 

(1) a CAD drawing of a new active 
cannula or steerable needle 
actuation unit,  

 

(2) a simulation showing that controller 
can stabilize bevel-steered needles 
to a 3D reference trajectory from 
various initial poses, 

 

(3) an active cannula prototype with 
inset line drawing indicating DOF.  

Webster et al., MICCAI 2008 



Steerable Needle (bevel-tip)  



Image-Guided Flexible Needle Steering by Robotic Arm  

This example illustrates 
trajectory planning and 
realization of curved trajectory 
by a robot. The whole 
movement is done in the same 
CT slice and the needle is kept 
in plane.  

Glozman et al., MICCAI 2008 

https://www.lcsr.jhu.edu/main/images/2/20/MICCAI_Workshop_Fig_Glozman.jpg


Motion Planning for Steerable Medical Needles  

In this example based on an MR image of the prostate, a biopsy needle attached to a rigid rectal probe 
(black half-circle) is inserted into the prostate (outlined in yellow) using simulation. Obstacles (red 
polygons) and the target (green cross) are overlaid on the image (a). The target is not accessible from 
the rigid probe by a straight line path without intersecting obstacles. However, bevel-tip needles bend 
as they are inserted into soft tissue. The planner computes a locally optimal bevel-left needle insertion 
plan that reaches the target, avoids obstacles, and minimizes insertion distance (b). Using different 
initial conditions, the planner generates a plan for a bevel-right needle (c). Due to tissue deformation, 
the needle paths do not have constant curvature.  

Alterovitz et al., MICCAI 2008 



Needle (flexible) Steering via Duty-cycled Spinning  

Simulation in a gelatin sample of multi-point “coverage” of a lesion zone using duty-cycled 
spinning of a bevel-tip needle. The needle is steered to the edge of a treatment zone (A). The needle 
is then advanced straight forward to the boundary (B). Then the needle returns to the entry point (A), 
and is advanced to other points in the treatment zone (C, then D), each time returning to the same 
starting point (as in A). The black gridlines are 1 cm apart.  

Riviere et al., MICCAI 2008,  

IEEE EMBS 2012 



Modeling and Planning of Needle Insertions in 
Deformable Tissue  

(a) shows the needle insertion 
simulator with a simplified 
mesh of the prostate and the 
surrounding tissue.  

(b) shows the needle inserted 
with optimal initial insertion 
parameters. In this situation 
the needle passed through the 
targets in the presence of the 
tissue deformation.  

(c) Vibro-elastographic image of 
the prostate in the transverse 
view.  

(d) the three-parameter force 
distribution along the needle 
shaft.  

Salcudean et al., MICCAI 2008 



Optically Actuated MR-compatible Active Needle 

Ryu, IEEE  IROS, 2011 



Ryu, PhD Thesis, 2012 

Optically Actuated MR-compatible Active Needle 



Ryu, IEEE  IROS, 2011 

Optically Actuated MR-compatible Active Needle 

Vertical deflection of the active needle tip with Joule heating. 



Optical activation of the new needle prototype and mechanical phantom tests: 
(left) as expected, two times faster bending achieved (right) bending capability 
in tissue phantom slightly increased but limited by heat loss and tissue reaction 
force 

Ryu, PhD Thesis, 2012 

Optically Actuated MR-compatible Active Needle 



SMA-actuated Smart (active) Needle Design 

Two types of needle design and actuation techniques: Longitudinal 
body segment design (left) and lateral body segment design (right). 

Podder et al., MedPhys 2012 



SMA-actuated Smart (active) Needle Control 



SUMMARY 
o IGBT robotic platforms are in active development and 

testing in preclinical settings. 
– About 15 robotic systems developed in 5 countries. 

o Accuracy in needle placement and seed delivery as assessed 
in phantoms are promising.  
– The 3D seed placement error is at sub-millimeter level 

(EUCLIDIAN).  

o Clinical study is the next step.  
– Where applicable, FDA Investigational Device Exemption (IDE) has 

been obtained (EUCLIDIAN).  

o AAPM Working Group on Robotic Brachytherapy was 
formed in 2008 
– AAPM TG192 formed in 2009, to produce report in <1 yr 



SUMMARY (cont.) 
 The feasibility of cancer discrimination in real time along 

interstitial needle tracks is demonstrated.  
 ROC analysis: validation set achieved AUC = 0.90 

 The proposed technique may be implemented in robotic 
brachytherapy with online force sensing and real-time planning to 
achieve targeted dose painting.  

 Investigation in tissue-mimicking phantom materials, needle-
tissue interaction models, flexible needle control and “smart” 
(active) needle prototypes further broadens the landscape of 
interstitial interventions such as implantation therapy and 
targeted biopsy/tissue resection under robotic assistance. 



Thank you! 
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