CONNECTICUT AREA MEDICAL PHYSICS SOCIETY a chapter of the AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE

Remaining physics challenges in proton therapy

H. Paganetti PhD

Professor and Director of Physics Research Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School

Disclosures

Work funded by the National Cancer Institute

P01 CA 02139 R01 CA 111590 R01 CA 140735 C06 CA 059267

Massachusetts General Hospital, Boston

~800 patients per year

HARVARD

MEDICAL SCHOOL

Massachusetts General Hospital, Boston

Introduction

Proton physics - The Bragg curve

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

HARVARD

MEDICAL SCHOOL

Introduction

Aperture and Compensator

HARVARD MEDICAL SCHOOL

Introduction

Pencil Beam Scanning

potential for intensity-modulated proton therapy (IMPT)

Main proton advantage 1: The 'integral dose' difference : 2-3 Main proton advantage 2: The end of range

> MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

Remaining physics challenges in proton therapy

- Utilizing the integral dose advantage
- Predicting the range in the patient to within 1-3 mm
- Validating the dose in the patient

IMRT plan (7 coplanar photon beams)

© Alex Trofimov, MGH

IMPT plan (4 coplanar proton beams)

© Alex Trofimov, MGH

Integral dose Rhabdomyosarcoma of Paranasal Sinus (7 y old boy)

6 MV Photons (3 field)

160 MeV Protons (2 field)

Proton IMPT (9 field)

© Alfred Smith (MDACC)

Photon IMRT (9 field)

In beam scanning, spot size matters !

Depending on the beam characteristics, there are considerable differences between different proton beams (potentially showing inferiority compared to photon treatments)

IMRT PBS 12mm PBS 12mm+AP PBS 3mm

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

Rhabdomyosarcoma Total dose = 50.4 Gy Number of proton fields = 2 Number of IMRT fields = 5

© Maryam Moteabbed, MGH

HARVARD

MEDICAL SCHOOL

Patient with posterior fossa ependymoma

Is the integral dose the decisive parameter?

Is a small volume of high dose 'better' compared to a large volume of low dose?

second cancer induction

cognitive development in children (!)

Total energy deposited (in Joules) in the patient for the treatment plans considered.

	Optic glioma			Ewing's sarcoma	
	Protons (3 fields)	Protons (4 fields)	IMRT	Protons	IMRT
4-year old	10.98	11.64	36.04	24.04	47.70
14-year old	10.73	12.05	29.57	75.48	148.00

HARVARD MEDICAL SCHOOL

Thyroid secondary cancer risk

Note:

- NTCP considerations in treatment planning are based on photon dose distributions
- Organ doses in proton therapy are more heterogeneous. There are no proton specific normal tissue constraints

Conclusion I:

The total energy deposited in a patient ("integral dose") is always lower when treating with protons. This, theoretically, should always result in an advantage for proton treatments. However,

- the dose distribution matters
- this may not always result in a significant clinical gain (site dependent; clinical trials?)
- the delivery system matters

Medulloblastoma

Protons

Photons

Copyright© MGH/NPTC 2003

The difference compared to photon therapy: range uncertainties

Applied range uncertainty margins for non-moving targets

Applied range uncertainty margins for non-moving targets

Source of range uncertainty in the patient	Range uncertainty
Independent of dose calculation:	
Measurement uncertainty in water for commissioning	$\pm 0.3 \text{ mm}$
Compensator design	$\pm 0.2 \text{ mm}$
Beam reproducibility	$\pm 0.2 \text{ mm}$
Patient setup	$\pm 0.7 \text{ mm}$
Dose calculation:	
Biology (always positive)	+0.8 %
CT imaging and calibration	± 0.5 %
CT conversion to tissue (excluding I-values)	± 0.5 %
CT grid size	± 0.3 %
Mean excitation energies (I-values) in tissue	± 1.5 %
Range degradation; complex inhomogeneities	- 0.7 %
Range degradation; local lateral inhomogeneities *	± 2.5 %
Total (excluding *)	2.7% + 1.2 mm
Total	4.6% + 1.2 mm

H. Paganetti: Phys. Med. Biol. 57, R99-R107 (2012)

(Sawakuchi et al., 2008)

Range degradation Type IIanalyticalMonte Carlo

(Paganetti *et al.*, 2008)

Applied range uncertainty margins for non-moving targets

Source of range uncertainty in the patient	Range uncertainty		
Independent of dose calculation:			
Measurement uncertainty in water for commissioning	$\pm 0.3 \text{ mm}$		
Compensator design	$\pm 0.2 \text{ mm}$		
Beam reproducibility	$\pm 0.2 \text{ mm}$		
Patient setup	$\pm 0.7 \text{ mm}$		
Dose calculation:			
Biology (always positive)	+ 0.8 %		
CT imaging and calibration	± 0.5 %		
CT conversion to tissue (excluding I-values)	± 0.5 %	→ ± 0.2 %	
CT grid size	± 0.3 %		
Mean excitation energies (I-values) in tissue	± 1.5 %		
Range degradation; complex inhomogeneities	- 0.7 %	→ ± 0.1 %	
Range degradation; local lateral inhomogeneities *	± 2.5 %	→ ± 0.1 %	
Total (excluding *)	2.7% + 1.2 mm	2.4 % + 1.2 mm	
Total	4.6% + 1.2 mm		

H. Paganetti: Range uncertainties in proton beam therapy and the impact of Monte Carlo simulations Phys. Med. Biol. 57: R99-R117 (2012)

Medduloblastoma Patient

Head & Neck Patient

Note:

In proton therapy, generic margin recipes are not sufficient !

Advanced dose calculation only solves part of the problem

In addition(!): patient geometry changes Example: Intra-fractional geometry changes

Before RT

After RT

Parotid glands

- Subm.glands
- Tumor

MEDICAL SCHOOL

HARVARD

E. M. Vasques Osorio *et al.* IJROBP 70: 875-82

In addition(!): patient geometry changes

- Patient weight gain / loss
- Filling up of sinuses
- (Sub-clinical) pneumonia
- Wet hair / gel / hairspray

MEDICAL SCHOOL

Mitigating range uncertainties using robust planning in IMPT

Mitigating range uncertainties using robust planning in IMPT

Measuring range using the ratio of two point doses

Range adjustment for adaptive delivery $D(x) = D_{a}(x) + D_{b}(x) + D_{c}(x)$

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

14 16 18

HARVARD

MEDICAL SCHOOL

Applications

Check the patient positioning
Monitor patient morphological change (Range verification)
Pre-treatment Range Tuning (Cranial field Medulloblastoma)

Pt

- 1. <u>Pattern Matching Technique</u> Minimization of the least-squares difference between measured profiles and 'Data Base'
- 2. <u>rms-width (σ_t) fitting technique</u>

$$S \equiv \sum_{i=i_1}^{i_N} v_i \quad (V),$$
$$m \equiv \frac{1}{S} \sum_{i=i_1}^{i_N} v_i t_i \quad (ms).$$

MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

Esophagus sparing

Range pullback of 4 mm for all patients

In-Vivo Range Check

- 1) Pedi patient under anesthesia
- 2) Insert esophageal dosimeter (diodes)
- 3) Turn on range check beam for < 1 cGy
- 4) Measure dose rate as function of time
- 5) Calculate water equivalent path length
- 6) Compare with treatment planning
- 7) Adjust beam range for treatment
- 8) Record dose delivered to esophagus
- 9) Only needed during 1st treatment

Range uncertainties sometimes limit our ability to exploit the end of range and thus negate some of the potential advantages of proton therapy

Example: Prostate treatments

Protons and Prostate Treatments

Current technique: Lateral fields Use lateral penumbra (10 mm, 50-95%) to spare rectum (penumbra not better than 15 MV photon fields)

Why not AP fields?

Use much sharper distal penumbra (~ 4 mm, 50-95%)

AP

LAT

Correct Range

Effect of 5 mm Range Variation

Undershooting C

Overshooting

© Hsiao-Ming Lu, MGH

- 1) Use balloon with detector array embedded on the surface
- Deliver dose (< 1 cGy) for 500 ms using a few cm of extra beam range to cover dosimeters
- Measure dose rate functions by a multi-channel electrometer
- Match data with "ruler" to determine WEPL at dosimeters
- Compare with planning calculations to adjust beam range
- 6) Commence treatment and measure distal tail dose by dosimeters as verification

HARVARD

MEDICAL SCHOOL

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

Conclusion II:

- Proton treatment planning needs to be done by experienced planners who understand the impact of range uncertainties.
- For some sites (e.g. prostate) range uncertainties prevent us from exploiting the full potential of proton therapy.
- In vivo systems can potentially be used to validate the range

HARVARD

MEDICAL SCHOOL

MASSACHUSETTS

GENERAL HOSPITAL RADIATION ONCOLOGY

 $A(z) \neq D(z)$ Measured Activity has to be compared with calculation

HARVARD MEDICAL SCHOOL

Isotope	Half life (min)
¹⁵ O	2.03
¹¹ C	20.33
¹³ N	9.96

Measured PET

Measured

Monte Carlo

current accuracy in soft tissue ~5mm current accuracy in bone ~2mm

Shift

$$R_{diff} = \arg\min_{\delta} \left(\sum_{i \in M} |A_{meas}(x_i) - A_{ref}(x_i - \delta)| \right)$$

Validating the range PET Surface Comparison

- $X_{meas,i}$ = reference range of measured PET, $X_{mc,i}$ = reference range of MC PET
- Reference range = midpoint of 50% and 25% location of maximum PET activity.
- Avg. Difference = average difference in reference ranges of measured and simulated PET.
- RMSD = root-mean-square deviation over PET surfaces.

- The uncertainty in range verification using PET does not decrease further after ~5 min of scan time
- In-room PET scanner is currently being replaced by in-room PET/CT

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

HARVARD

MEDICAL SCHOOL

- Higher sensitivity Acquisition time of 2-3 min
- Higher spatial resolution 4.3 mm (In-room PET) vs. 2.0 mm (In-room PET/CT)
- CT component for accurate image co-registration One of the largest technical obstacles is the co-registration accuracy between PET and CT image

Prompt gamma radiation

HARVARD MEDICAL SCHOOL

DOSE

PromptGamma

Validating the range Prompt Gamma analysis; Adenoid cystic c. - Beam scanning -

MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

After radiation exposure, vertebral bone marrow undergoes fatty replacement

T-1 weighted spin-echo sequence

distance (cm) Overall dose-signal intensity derived from the lateral penumbra in the sacrum

> Gensheimer M F, Yock T I, Liebsch N J, Sharp G C, Paganetti H, Madan N, Grant P E and Bortfeld T 2010 Int J Radiat Oncol Biol Phys **78** 268-75

planned 50% isodose MRI 50% isodose

0123cm Pt. 10, 36 Gy (RBE)

Conclusion III:

- Proton therapy offers unique imaging capabilities due to nuclear interactions in tissues
- The highly conformal dose distributions in proton therapy offer the potential of outcome imaging

SUMMARY

The physical characteristics of proton beams

- ... cause dosimetric advantages compared to photon beams
- ... results in unique dosimetric uncertainties
- ... offer unique imaging and adaptive therapy strategies
- uncertainties in predicting the proton beam range in patients are ~3-5% (~2.5% with advanced dose calculation methods)
- uncertainties can be mitigated in (robust) IMPT optimization
- In vivo detectors might allow to adjust the range
- unique in vivo dose (range) verification methods (PET, promptgamma, MRI) are being worked on

Acknowledgements

