CONNECTICUT AREA MEDICAL PHYSICS SOCIETY

a chapter of the AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE

Contura Multilumen Device Experience For Accelerated Partial Breast Irradiation

Frances F.-C. Su, Ph.D.

Yale-New Haven Hospital

Outline

- Introduction: breast conservation therapy
- The Contura device
- Patient selection
- Imaging for treatment planning
- Treatment planning
- Output Pre-treatment quality assurance
- Results
- Oiscussion
- Conclusions

Breast Conservation Therapy

 Accelerated partial breast irradiation vs. whole breast irradiation

- Mammosite HDR brachytherapy
 - Single or multiple dwell positions
 - Limitations
 - Breast tissue conformance
 - Balloon asymmetry
 - Balloon to skin distance

The Contura device

The Contura device

The Contura device

Vacuum port

Before air removal

After air removal

Patient selection

- Age: ≥ 50 y/o
- Histological confirmation of the tumor as DCIS and/or invasive breast carcinoma
- T_{is} , T_1 , or T_2 (≤ 3 cm in diameter)
- Axillary node(s): N₀
- No distant metastases (M₀)

Preparation for imaging

- Vac-lok fabrication
- Varian GammaMed Plus ix: trimming of each lumen
 - Length cutting gauge (GM11010030)
 - Marker for daily connection
 - Accessory pad(s)

Length cutting gauge (GM11010030)

CT dummy marker

Imaging for treatment planning

- Initial evaluation imaging
 - 5 mm slice thickness
 - Air/fluid removal
- Planning imaging
 - 1.25 mm slice thickness
 - 5 cm superior and inferior to the Contura balloon
 - Normal breathing
 - No contrast agent used
 - CT dummy in # 2 lumen

CT dummy maker in #2

Identify 5 lumens

Permanent maker in #1

- Prescribed dose (PD): 34 Gy in 10 fractions
 - 5 working days
 - at least 6 hours between two fractions
- Obsimetric goals:

V _{95%} (%)	V _{150%} (CC)	V _{200%} (CC)	Skin Dose (% of PD)
≥100% of PTV_Eval	≤ 50	≤ 10	≤ 130

• 5 mm step size between dwell positions

Only #5 (central) lumen used

#2,3,4 lumens used

Only #5 (central) lumen used

#2,3,4 lumens used

Pre-treatment quality assurance

- Balloon diameter verification
 - Ultrasound: every fraction vs. baseline
- Air/fluid removal
- Skin marker verification
 - Rotation
 - Distance index
- Length of each lumen verification
 - Length gauge (130 cm wire)

Pre-treatment quality assurance

Results: our patients

Summary of our 7 patients

- Balloon volume: average 39.0 cc
- ⊙ V_{95%} (%):median 102.9 (96.4-107.0)
- V_{150%} (cc):median 32.6 (26.5-37.5)
- V_{200%} (cc):median 10.1 (7.9-11.8)
- Skin max. dose (% of PD): median 121.1 (85.2-139.4)
- Balloon-to-skin-distance (mm): 2.8-13.1

Results: current study

Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, pp. 26-33, 2011

IMPROVEMENTS IN CRITICAL DOSIMETRIC ENDPOINTS USING THE CONTURA MULTILUMEN BALLOON BREAST BRACHYTHERAPY CATHETER TO DELIVER ACCELERATED PARTIAL BREAST IRRADIATION: PRELIMINARY DOSIMETRIC FINDINGS OF A PHASE IV TRIAL

DOUGLAS W. ARTHUR, M.D.,* FRANK A. VICINI, M.D.,[†] DORIN A. TODOR, PH.D.,* THOMAS B. JULIAN, M.D.,[‡] AND MAUREEN R. LYDEN, M.S.[§]

*Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, [†]Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, [‡]Department of Human Oncology, Allegheny General Hospital, Pittsburgh, PA, and [§]BioStat International, Inc., Tampa, FL

V _{95%} (%)	V _{150%} (CC)	V _{200%} (CC)	Skin Dose (% of PD)	Rib Dose (% of PD)
≥95% of PTV_Eval	≤ 50	≤ 10	≤ 125	≤ 145

Results: Arthur et al.

Summary of 144 patients

- Balloon volume: average 46.5 cc
- V_{150%} (cc):median 26.7 (11.6-46.0)
- V_{200%} (cc):median 5.7 (0.0-12.5)
- Skin max. dose (% of PD): median 91.7 (33.2-144.0)
- Balloon-to-skin-distance (mm): 1.2-35.0

Results: Arthur et al.

Fig. 4. Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, pp. 26-33, 2011

Results: Arthur et al.

Fig. 5. Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, pp. 26-33, 2011

Discussion

- The impact of the vacuum port Tokita et al., *brachytherapy* 2010
 - V_{air/fluid} around Contura balloon before and after vacuum port use
 - $\,\circ\,$ Median $V_{air/fluid}$ decreased from 6.8 cc to 0.8 cc
 - Before: 10 (31.3%) of 32 patients with V_{air/fluid} ≥ 10% of PTV_Eval
 - \circ After: median V_{air/fluid} is 1.6% of PTV_Eval
 - \circ After: median V_{90%} increased 8%

Discussion

- Dosimetric advantages of Contura (n=45) over MammoSite (n=137)
 - Wilder et al., Brachytherapy 2009
 - Satisfaction of treatment planning goals: 89% of Contura vs. 36% of MammoSite
 - Contura no explantation required
 - 16% (7 of 45) of patients with 3-6 mm skin space
 - 11% (5 of 45) of patients with $V_{air/fluid}$ ≥ 10% of PTV_Eval
 - Mammosite explantation required
 - 10% of patients with skin space < 7 mm
 - 13% of patients with a large air/fluid pocket next to balloon

Discussion

- A dosimetric comparison of Contura (n=33) vs. MammoSite (n=33)
 Brown et al., *Brachytherapy* 2011
 Coverage of PTV_Eval: Contura is either equal or better
 - $V_{150\%}$ and $V_{200\%}$: no difference

	Contura	MammoSite
Skin dose (median)	112% of PD	134% of PD
Rib dose (with < 4mm space)	144% of PD	191% of PD

Conclusions

- The use of the Contura for APBI tailors the dose away from skin with good target coverage and acceptable hot spot volumes (V_{150%} and V_{200%}).
- Higher dosimetric goals compared to NSABP B-39/RTOG 0413 can be set and achieved.

NSABP: National Surgical Adjuvant Breast and Bowel Project RTOG: Radiation Therapy Oncology Group