Quality, Safety, and the Future of Therapy Medical Physics

Todd Pawlicki

Professor and Vice-Chair

Department of Radiation Medicine & Applied Sciences
University of California, San Diego

Safety is Event Driven

http://www.nytimes.com/2010/01/24/health/24radiation.html?fta=y

Quality is Data Driven

AAPM Task Group Reports

- TG-24 (1984)
 - Physical Aspects of Quality Assurance in Radiation Therapy
- TG-28 (1987)
 - Radiotherapy Portal Imaging Quality
- TG-35 (1993)
 - Medical Accelerator Safety Considerations
- TG 40 (1994)
 - Comprehensive QA for Radiation Oncology
- TG 142 (2009)
 - Quality assurance of medical accelerators

The report of **Task Group 100** of the AAPM: Application of risk analysis methods to radiation therapy quality management (2016)

Quality and Safety Work

What is "Clinical Medical Physics"?

- Radiation safety and shielding design
- st Helping at the machines \pm SRS, SBRT, gating, faults, etc.
- Ad hoc patient interactions answering questions, etc.
- * Time for a change
 - Nischine QA, Second checks, Weekly checks, patient-specific QA
 - 🕒 Lineack, S.D. planering, HVRT, Gatterg, KGRT, Protons, MR-1GRT, etc.

Ideas Requiring and Enabling Change

Complexity

Complicated

Complicated is Not Complex

- Complex entities have special components
 - Diverse, interdependent, connected, adapting
- Characteristics of complex systems
 - Emergent properties
 - Novel functions
 - Robust
 - Unpredictable
 - Large events

Radiotherapy and Imaging

- Complex socio-technical system
- Understanding accidents is not just a failure of equipment or process step

Accident Causality Models

- Reliability Engineering
 - Based on probability of success
- Accidents seen as...
 - Combination of unsafe acts and latent hazard conditions within the system which follow a linear path
- Analysis tools
 - Process maps and FMEA

- Systems Engineering
 - Based on component interaction
- Accidents seen as...
 - Combinations of mutually interacting variables which occur in real world environments
- Analysis tools
 - Control loops and STPA

AAPM TG-100

- The Report of the Task Group 100 of the AAPM
 - Applications of Risk Analysis Methods to RT Quality Management
- Key Components of TG-100
 - Quality management
 - Process mapping
 - Failure Modes and Effects Analysis (FMEA)
 - Fault Tree Analysis (FTA)

Another Approach to Safety Assessment

- Systems—Theoretic Process Analysis (STPA)
 - Process is described by a number of control loops
 - Results in a hierarchical understanding of process operation

Leveson. Safety Science, 2004. Pawlicki *et al.* Med Phys, 2016.

Inductive vs Deductive

Pawlicki et al. Med Phys, 2016.

Systems Understanding of Safety

- Safety is a emergent property of a system
 - Not a component of the system
 - Hardware, software, or process can't be deemed as 'safe'
- Most errors reflect predictable human failings in the context of poorly designed systems

Ideas Requiring and Enabling Change

Automation

Automation

UC San Diego

RETHINKING MEDICAL PHYSICS

UCSD RapidPlan Approach

- Setting up auto-planning routines (Phase 0)
 - Modelling
- Planner first, then RapidPlan (Phase 1)
 - Blinded study
- RapidPlan first, then planner (Phase 2)
 - Plan refinement
- RapidPlan only unless constraints violated
 - Planning as a Service

UCSD RapidPlan Results

- Phase 0 Modeling/Validation (~500 prior pts)
- Phase 1 Blinded study (~300 pts)
 - HN, lung SBRT, and SRS beat manual planning 65-80% of the time
 - Prostate and liver SBRT are approximately equal
 - GYN and prostatic fossa wins 35-40% of the time
- Phase 2 RapidPlan then manual refinement (~250 pts)
 - Documenting plan improvements (if any) as we go

Dosimetrist Perceptions

- Initial push back
 - Job security, competing with a computer
- Now embrace as a tool to speed up their work
 - Saves them about 40% of their time per case
- Better communication with physicians
 - RapidPlan gives them credibility
- Ultra-fast ramp up for new dosimetrists

Automated Acceptance, Commissioning, & QA

- Better use of existing technology, e.g., EPID
 - Yaddanapudi et al. Med Phys, 2017 (accepted).
- Universal software, e.g., MPC
 - Clivio et al. Radiat Oncol, 2015.
- Systems-based safety assessment, e.g., STPA
 - Pawlicki et al. Med Phys, 2016.
- Process-based data analysis, e.g., SPC
 - Pawlicki et al. Seminars in Rad Onc, 2012.

Current Approach to Quality (and Safety)

Event View

Did it get done right?

Each case is a go/no-go decision.

Leads to This Type of Thinking

Physics Experiment

Commissioning Procedure

TPS vs Measurement = 2.715%

Maybe I should do another experiment?

If only I had more time!

Quality and Safety

Event View

Did it get done right?

Each case is a go/no-go decision.

Process View

Are people and equipment doing it right?

How is the process performing?

Statistics-Based Decision Strategy

Time or case-number

A Way Forward: Continuous QA

- Largely automated daily linac QA only
 - No monthly or annual linac QA
- New approach: plan/weekly-checks, patient-specific QA
 - Take a patient view and leverage existing data
- Learn and adapt
 - Better response to process changes, near-misses, and incidents

U.S. and Canadian Operators Accident Rates by Year

Fatal Accidents | Worldwide Commercial Jet Fleet | 1959 through 2014

http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf

What is our clinical future?

- Modified QA to maximize impact while minimizing effort
- Automated planning, plan and process checks
- How can we utilize our expertise to have a firsthand impact on patient care?

Physics Direct Patient Care Initiative

- Establish an independent relationship with patients
- Take ownership of technical aspects related to treatment
- Designed interactions with patients

Patient Interactions

Resident (and Faculty) Training

UC San Diego

Randomized Clinical Trial

PDPC vs Conventional

Primary Endpoint

- Patient anxiety & satisfaction
- Questionnaire
 - 3 time points during RT course

Secondary Endpoint

- Physician efficiency
- Monitor physician workload
 - Weekly on-treatment visit duration

Our Clinic of the Future

Summary

- Understand and address complexity
 - Enforce system controls, not just 'checking things'
- Automation and process-based data analysis
 - Planning, QA, and workflow
- Physicists become part of the direct patient care team
 - Use our unique perspective to improve radiotherapy

