INVESTIGATION OF NESTED VOLUME-OF-INTEREST CONE-BEAM CT IMAGING WITH A LOW ATOMIC NUMBER LINEAR ACCELERATOR TARGET

Del Leary, PhD

AAPM Rocky Mountain Chapter Meeting May 20, 2016

Outline

- Low Z target
- OVOI
- Workflow and Utility (multiple and nested VOIs)
- Normalization and dosimetry
- Applications and future work

Low-Z target CBCT

- Carbon, beryllium or aluminum target in linac beam line
- Replaces flattening filtration
- Allows improvement of CNR by 2-5x

6 MV

Position: (100.373 mm. 65.8444 %) - Curve Id: Fs100.0

2.35 MV

Compare energy spectra

Low-Z CBCT: Contrast-to-noise

3.5 MeV/AI

6 MV

Robar et al. Med. Phys. 36, pp.3955

Decrease of dose with 3.5 MeV/Al beam compared to 6MV by a factor of ~5–8 depending on tissue and CNR

CBCT versus VOI CBCT

Full-Field (FF)

Volume-of-Interest (VOI)

Costs:

- Imaging dose to entire volume of patient
- 2. Reduction of image quality due to scatter

Benefits:

- Localization of imaging dose to VOI
- 2. Improved scatter-toprimary characteristics

Low-Z VOI CBCT workflow

- Delineate VOI for imaging on planning CT
 - Define CBCT arc geometry and beam shaping – export MLC sequence file

Eclipse 10.0

Processing of MLC files using Matlab

Matlab

Acquire 2.35 MV / Carbon target VOI CBCT

Clinac with carbon target

- 4
- FDK reconstruction
- Normalization

Reconstruction

Apparatus

Example VOI configurations

Multiple VOIs

Multiple VOIs

Nested VOIs

Two separate MLC sequences merged together

Define inner VOI

e.g. PTV

Define outer VOI

e.g. surrounding OARs or body contour

Acquire inner VOI at higher dose and CNR

Nested VOIs

Raw reconstruction

- Pixel intensities between the two VOIs now have different relative radiodensities
- For this reason we normalize inner and outer VOI after the reconstruction that can later be converted into Hounsfield units.

Normalize - masking

Normalize - masking

In

Out

Ring

Normalized reconstruction

Zoomed images

2:1 6:1

Radiochromic Film Dosimetry

Find dose and CNR

Repeat the VOI sequences on a water phantom with cortical bone ρ_e =1.69 contrast tissue

Control of dose and CNR in nested VOIs

1.4 Dose(cGy) 1.6

1.8

8.0

0.6

1.2

 $CNR \propto \sqrt{dose}$

Low-Z CBCT dose AAA distributions

Nested VOI, 2:1

Nested VOI, 6:1

Case scenarios

For Rectum V75 < 15%

For Bladder $V75 \le 25\%$

Summary

- Lowered dose and/or improved CNR by combining low-Z target beam with dose localization
 VOI approach
- Versatile MLC approach multiple or nested
 VOIs possible as defined at planning step
- With VOI inner/outer ratio sequencing, dose reduction can be tuned to threshold CNR for outer VOI
- Dose can be calculated in Eclipse and subtracted from treatment dose

Future directions

Cho, S. (2005)

Based on the results of Hainfeld et al. (2004) simulated the dose enhancing using a modified phantom and tumor composition defined by ICRU to incorporate different concentrations of GNPs and compared 3 radiation sources.

Concentration (per gram of tumour)	140 kVp	6 MV FF	6 MV NFF	4 MV FF	4 MV NFF
7 mg Au	2.114	1.007	1.014	1.009	1.019
18 mg Au	3.811	1.015	1.032	1.019	1.044
30 mg Au	5.601	1.025	1.053	1.032	1.074

FF: flattening filter, NFF: no flattening filter.

Future directions

Thank you!

