Functional lung radiation therapy with 4DCT-Ventilation: from theory to clinical implementation

Yevgeniy Vinogradskiy PhD, DABR University of Colorado School of Medicine

Background

4DCT-Ventilation Imaging

<u>4DCT</u>

4DCT-Ventilation

Background

- Reduced cost
- Reduced dose
- Better spatial resolution
- Anatomical + Functional information
- Better quantification

Outline

- Image formation
- Validation
- Clinical applications
- Clinical trial

Outline

- Image formation
- Validation
- Clinical applications
- Clinical trial

Calculating ventilation maps

4DCT – 10 phases

Link lung voxels from inhale phase to exhale phase using deformable image registration

Deformable registration maps

4D deformable registration using trajectory modeling (Castillo et al., 2010)

$$\frac{V_{in} - V_{ex}}{V_{ex}} = 1000 \frac{\overline{HU}_{in}^{voi} - HU_{ex}}{HU_{ex}(1000 + \overline{HU}_{in}^{voi})}$$

Specific ventilation Local fractional change in air content Specific ventilation of 0 = no volume change Specific ventilation of 1 = volume of air doubled

Simon et al., 2000, Guerrero et al., 2006, Fuld et al., 2008

Outline

- Image formation
- Validation
- Clinical applications
- Clinical trial

Validation again nuclear medicine

4DCT Ventilation Map

Validation again nuclear medicine

4DCT Ventilation Map

	SPECT Ventilation		4DCT Ventilation	
	Right (%)	Left (%)	Right (%)	Left (%)
Тор	9.5	2.7	16.8	8.1
Middle	30.2	21.1	21.9	12.4
Lower	21.4	15.1	23.2	17.7
Total	61.1	38.9	61.8	38.2

0

Validation again nuclear medicine

4DCT Ventilation Map

Correlation coefficient = 0.65

Radiologist observations: Sensitivity = 90%, Specificity = 64%, Accuracy = 81%

Outline

- Image formation
- Validation
- Clinical applications
- Clinical trial

Changes in lung function during RT

Week 0

Week 5

Week 3

Week 7

40

30

20

10

۵0

Avoid functional portions of the lung in favor of irradiating through less functioning lung tissue

Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose

Moyed M Miften, Shiva K Das, Min Su and Lawrence B Marks

Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA

E-mail: miften@RadOnc.Duke.EDU

Received 15 January 2004 Published 1 April 2004 Online at stacks.iop.org/PMB/49/1711 (DOI: 10.1088/0031-9155/49/9/009)

International Journal of Radiation Oncology*Biology*Physics Volume 33, Issue 1, 30 August 1995, Pages 65–75

Clinical original contribution

The role of three dimensional functional lung imaging in radiation treatment planning: The functional dose-volume histogram

Radiotherapy and Oncology

Volume 77, Issue 3, December 2005, Pages 271-277

SPECT in treatment planning

The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer

Judith A. Christian^{a,} ▲ · Mike Partridge^a, Elena Nioutsikou^a, Gary Cook^a, Helen A. McNair^a, Bernadette Cronin^a, Frederic Courbon^b, James L. Bedford^a, Michael Brada^a

Functional planning – Will it work?

- 96 NSCLC patients
- Radiation pneumonitis toxicity information using CTCAE grading
- Calculated dose metrics
- Calculated dose + function metrics
- Is dose + function a better predictor of toxicity than dose alone

Functional planning

MLD = 22.9 Gy No pneumonitis

Dose

MLD = 23.2 Gy Grade 3 pneumonitis

Dose

Ventilation

Functional planning

• Area under the curve (AUC) and logistic regression p value

MLD	fMLD	V20	fV20
	0.62		
(p=0.29)	(p=0.07)	(p=0.23)	(p=0.04)

Outline

- Image formation
- Validation
- Clinical applications
- Clinical trial

4DCT-Ventilation Clinical Trial

- 70 lung cancer patients between 2 institutions
- Use 4DCT to calculate ventilation imaging
- Use 4DCT-ventilation to design functional radiation plans
- <u>Hypothesis:</u> 4DCT-venitlation functional planning results in less pulmonary toxicity than toxicity with current standard of care techniques
- Assess lung function in a variety of ways
 - CTCAE Toxicity (Pneumonitis, esophagitis)
 - QOL Questionnaires
 - PFTs
 - CT/4DCT-Ventilation imaging
 - Nuclear Medicine VQ Imaging
 - PET Imaging

Should all patients be eligible?

Patient spatial lung function

Heterogeneous ventilation Suitable for functional sparing

100%

Homogenous ventilation Not-suitable for functional sparing

Protocol Basics

- Functional planning
 - Structure based functional approach

Planning techniques

Protocol Basics

- Functional planning
 - Structure based functional approach
 - Start with standard (non-functional plan)
 - Planning priorities 1) Target coverage 2) OAR constraints 3) Reducing dose to functional lung

Conclusions

- 4DCT-Ventilation calculates lung ventilation maps from 4DCT data
- 4DCT-Ventilation has been validated against established methods of measuring lung function
- Retrospective work suggests toxicity can be reduced with functional planning
- Clinical trials are underway to evaluate 4DCT-Ventilation based functional planning

Acknowledgments

- NIH/NCI R01CA200817
- State of Colorado: Advanced Industries Accelerator grant

Coauthors Yevgeniy Vinogradskiy PhD **Timothy Waxweiler MD** Leah Schubert **Quentin Diot Richard Castillo PhD Edward Castillo PhD** Thomas Guerrero MD, PhD Phillip Koo, MD Derek Linderman, MD **Bernard Jones, PhD** Chad Rusthoven, MD Laurie Gaspar, MD, MBA Brian Kavanagh MD, MPH **Moved Miften PhD**