Making Hi Tech Radiotherapy Safe

Connecticut Chapter AAPM
March 25, 2010

Howard Amols
Memorial Sloan Kettering Cancer Center
New York, NY
Radiation Offers New Cures, and Ways to Do Harm

BY WALT BOGDANICH
JANUARY 24, 2010

As Scott Jerome-Parks lay dying, he clung to this wish: that his fatal radiation overdose — which left him deaf, struggling to see, unable to swallow, burned, with his teeth falling out, with ulcers in his mouth and throat, nauseated, in severe pain and finally unable to breathe — be studied and talked about publicly so that others might not have to live his nightmare.

Sensing death was near, Mr. Jerome-Parks summoned his family for a final
Until recently, serious radiation therapy accidents were almost unheard of.

BUT

unheard of ≠ unknown
unheard of ≠ rare
3 Myths We Wish to Dispell

1. You need new high technology to have an accident
2. Radiation therapy accidents are rare
3. Most accidents happened long ago in third world countries
There has been a focus on high-technology as the source of most radiation therapy accidents.

This is only partially true.

New technology may contribute to errors, but almost every RT disaster involving new technology required significant help from humans in order to happen.

Really big errors are usually a team effort!
“Those who don't know history are destined to repeat it.”

Edmund Burke
Emphasis will be on how:

systematic errors, and/or individual acts of stupidity coupled with:

deficient QA/QC program,
bad communications,
and carelessness

results in major errors.
There is something fundamentally wrong with the historical method by which the medical profession has approached QA/QC:

1. Medical staff do not normally make mistakes

2. When mistakes are made it’s because one individual screwed up, and we must find and punish the offender

3. Preferably someone relatively low in the pecking order
It has been pointed out many times that if commercial airlines had the same error rates as hospitals there would be a major airline crash EVERY DAY.

`And that’s the truth!’

Lily Tomlin

(Their prices may be ridiculous, you may not get there on time, and your baggage may end up in a different city, but airlines usually get you where you want to go in one piece)
Making Hi Tech Radiotherapy Safe

- Part 1: Learn how to mess up
Making Hi Tech Radiotherapy Safe

- Part 1: Learn how to mess up
- Part 2: Don’t do that!
7 STEP RT DISASTER RECIPE

1. Overwork your staff
2. Buy new equipment that you don’t know how to use
3. Give your staff unreasonable deadlines
4. Never hire outside auditors or ask for help
5. Ignore `suspicious’ or unusual clinical outcomes (they’re anomalies or overly kvetchy patients).
6. Always trust the manufacturer. They would never cover up problems about equipment safety (the Toyota response)
7 STEP RT DISASTER RECIPE

1. Overwork your staff
2. Buy new equipment that you don’t know how to use
3. Give your staff unreasonable deadlines
4. Never hire outside auditors or ask for help
5. Ignore `suspicious’ or unusual clinical outcomes (they’re anomalies or overly kvetchy patients).
6. Always trust the manufacturer. They would never cover up problems about equipment safety (the Toyota response)
7. Hire inadequately trained staff (not required if you follow steps 1-6).
1. The grand daddy of radiotherapy accidents:
The Ohio Cobalt-60 disaster

2. The daddy of radiotherapy accidents:
The Therac disaster

3. Son of radiotherapy accidents:
The New York IMRT accident

4. Grandchildren, nieces, and nephews:
Moffit, Cox, and others
THE GRAND DADDY OF RADIATION DISASTERS:

Riverside Methodist Hospital, Columbus, OH 1972

The Riverside radiation tragedy

(at least 10 deaths + 78 serious injuries)
THE GRAND DADDY OF RADIATION DISASTERS

By his own statement, Callendine is a perfectionist, who often insisted on checking two separate calibration systems against each other when monitoring the output of a cobalt radiation source. "I recognize that anyone can make a medical mistake," he recalls, "so we wanted to minimize this. When George signs his name, I want to be sure. It's a personal thing."

Notwithstanding Callendine's reputation and long service, Mansfield and others in Riverside's administration had concluded by 1972 that changes had to be made. Because
Because both Calenline and his equipment were gone when he arrived, Axt was forced to reconstruct Riverside's radiation physics program almost from scratch. His clinical experience had been limited to a 14-month stint at the University of California Medical Center at San Francisco not enough to qualify for American Board of Radiology certification. Part of his training there involved working with cobalt-60.

Often a cobalt-60 source should be calibrated to check its output, but an average recommendation might be once every two or three months. Yet, in the 27 months between his arrival and the discovery of the radiation overdoses in January, 1976, Axt apparently calibrated the source only twice—and not at all after May, 1974.

Why did Axt stop making cobalt-60 calibrations? Mainly, he told attorneys who interviewed him at length in June, 1977, he stopped because his time was fully occupied by other, higher-priority projects. Very soon after his arrival at Riverside, Axt was given considerable responsibility for the acquisition, installation and testing of a new linear accelerator—one of the most advanced and complex high-energy nuclear therapy machines available.
What happened?

- Decay was determined from straight-line plot on semi-log graph paper with calendar ordinate.
What happened?

- When edge of graph paper was reached, physicist continued plot on linear paper.
To compensate for the assumed lower output, technicians dialed in cobalt-60 exposure times that were, increasingly, too long. By March of 1975, the resulting radiation overdoses were averaging 10 per cent. And by January, 1976, when the problem was finally discovered, the overdoses were as high as 40 per cent.

As far as anyone knows, neither Fahey nor anyone else at Riverside ever checked Axl’s calibrations or instructed him to make a calibration during 1974 or 1975. So two simple mistakes went undetected for nearly two years, while the overdoses climbed.
At first, because the overdoses were marginal and because therapeutic radiation in any dosage almost always produces some unwanted side effects, the overdoses went unnoticed. But by late 1975, the number and intensity of complaints from Riverside's cancer patients and their doctors were increasing.

One patient, Ohio Bell telecommunications specialist Jim Baily, says his cobalt treatments left him “weak as a kitten” and produced “incapacitating diarrhea.” After receiving two sets of treatments, estimated later at 26 per cent and 40 per cent overdoses, Baily recalls, “I told Dr. Fahey about these effects and his reply was that they were normal.

Dr. Steven Andresen, a radiation therapist who joined the Riverside staff under Fahey in September, 1975, later told NRC investigators he almost immediately noted more significant patient reactions than he had seen elsewhere. Because the number of such reactions seemed to be increasing, Andresen says, he asked Axt in late January, 1976, when he last “put a meter under” the cobalt-60 teletherapy device to check its output.

When Axt could not give him a specific date for the last calibration, Andresen became concerned and directed him to make one immedi-
Merv and Sam are about to have a brief encounter of the 3rd kind
the evidence were discovered.

Under close questioning, Axt admitted the attempted cover-up. He had faked the reports, he later told attorneys, simply because he was afraid of losing his job. On May 6, Mansfield suspended Axt and notified the NRC of the new development. NRC investigators returned to Columbus, where Axt told them he had never viewed calibration of the cobalt teletherapy device as a high-priority duty, and in his mind the device’s
Was this Axt’s fault?
Of course it was.
But he had a lot of help!
He had a lot of help!

1. Administration didn’t hire enough staff
2. External audits weren’t part of the QC program
3. Everyone was in a rush to get their new Linac running
4. MD’s ignored `suspicious’ clinical reactions
5. Therapists ignored unusually long treatment times
Therac 25 Disaster
(screwing up, 80’s style)

An Investigation of the [Therac-20 &] Therac-25 Accidents

Nancy Leveson, University of Washington
Clark S. Turner, University of California, Irvine

June 1985-January 1987: 6 accidents involved massive overdoses by the Therac-25 with resultant deaths and serious injuries. They have been described as the worst series of radiation accidents in the 35-year history of medical accelerators.
A. Machine Calibration / Malfunctions -6

Place: U.S. & Canada
Time: 1985-87
Cause: Therac-25 Linac malfunction
Impact: 16,000 to 18,000 cGy to 6 patients
In-depth Analysis of Therac-25 incidents

Therac 25 incidents
1. Kennestone Center, Marietta, GA
2. Hamilton Cancer Center, Ontario
3. Yakima Valley, Washington
4. East Texas Cancer Center, Tyler, Texas
Chronology of Therac-25 incidents 1985-87

1985
June 3rd: Marietta, GA incident
July 26th: Hamilton, Ontario incident
Oct.: Georgia patient files a lawsuit
Dec.: Yakima incident

1986
Jan. 31st: Yakima letter to AECL
Feb. 24th: AECL letter to Yakima
March 21st: Tyler, TX overdose
April 11th: Tyler, TX 2nd incident
April 15th: AECL files incident report to FDA

1987
Jan. 17th: Yakima, 2nd incident
Feb. 10th: FDA asks AECL to pull the plug
1st accident: Kennestone Regional Oncology Center, June 1985, Marietta, Georgia.

The Therac-25 had been operating for about 6 mo; other Therac-25s had been operating, without incident, since 1983.

June 3, 1985, patient set up for 10-MeV (scanning) electron treatment to clavicle area. When the machine turned on, she felt a "tremendous force of heat . . . red-hot sensation." Patient said, "You burned me." The technician replied that was not possible. No marks on patient at the time, but treatment area felt "warm to the touch."
AECL contacted and asked if Therac could operate in electron mode without scanning.

Three days later AECL said it was not possible.

Clinical explanation was sought for reddening of the skin.

The oncologist attributed it to her disease or to normal treatment reaction.

The physicist later estimated that she received 1-2 doses in the 150-200 Gy range.
Health-care professionals and institutions were not required to report incidents to manufacturers.

Other Therac-25 users were unaware of what had occurred until after subsequent accidents.

Even then, most information came through personal communication among themselves.

Therac shut down after 5 seconds with "H-tilt" error. Therac's display read "no dose" and indicated "treatment pause."

2nd attempt to treat by pressing `proceed key' (standard operating procedure). Operators accustomed to frequent malfunctions that had no untoward consequences for the patient.

Again, the machine shut down in the same manner. Repeated process 4 more times.

Engineer was called who found nothing wrong. Also not unusual for Therac-25.
On July 30 AECL sent a service engineer to investigate. The FDA, CRPB, and the users were informed that there was a problem, although users claim they were never informed that a patient injury had occurred.

AECL could not reproduce the malfunction, but suspected a transient failure in the microswitch used to determine turntable position.

AECL also altered the software so that computer checked for "in transit" status of the switches when the turntable was moving.

That a more serious software error was the real problem was not yet realized.
3rd accident: Yakima Valley Memorial Hospital, WA, December 1985.

On February 24, 1986, AECL sent a written response to Yakima: "After careful consideration, we are of the opinion that this damage could not have been produced by any malfunction of the Therac-25 or by any operator error." And "there have been no other instances of similar damage to this or other patients."

At that time, Yakima did not believe that the patient was overdosed because the manufacturer had installed additional hardware and software safety devices to the accelerator. They were not aware of any other incidents,
4th Hospital, March-April, 1986. Tyler Texas

After 2nd accident the ETCC physicist immediately took the machine out of service and called AECL to alert the company to this apparent overdose.

The Tyler physicist then began his own careful investigation. He worked with the therapist, who remembered exactly what she had done on this occasion. After a great deal of effort, they were eventually able to elicit the Malfunction 54 message.
What was the real problem:

1. If an electron treatment followed an x-ray treatment, and
2. The Therapist typed a certain command sequence very quickly, then....
3. Electron current in accelerator guide remained at x-ray values
4. X-ray targeted would be retracted
5. Electron scanning would not be activated
THERAC ANALYSIS

Was this AECL’s fault?
Of course it was.
But like Axt, they had some help!
They had a lot of help!

1. There were no regulations for error reporting
2. No communication between institutions
3. Three institutions saw really suspicious linac behavior, but none investigated
4. Suspicious clinical results ignored
Accidents are seldom simple

1. usually involve complex web of interacting events with multiple contributing technical, human, and organizational factors

2. tendency to believe that the cause of an accident had been determined (e.g., microswitch failure) without adequate evidence to come to this conclusion

3. assuming that fixing a particular error (microswitch and software bug) would prevent future accidents. There is always another software bug.
Patient reactions were the only real indications of the seriousness of the problems with the Therac-25.

The Therac-25 software "lied" to the operators. The machine could not detect the massive overdose because ion chambers saturated at the high dose rate of the unscanned electron beam.

A common mistake in engineering is to put too much confidence in software. Software design errors are harder to find and eliminate.

Hardware failure modes are generally more limited and building protection against them is easier.

A lesson to be learned from the Therac-25 accidents is not to remove standard hardware interlocks when adding computer control.
Déjà vu all over again

(screwing up, modern style)

IMRT accident

New York, 2005
Background

• March 2005, New York City (‘the city’)
 • A patient is due to be treated with IMRT for head and neck cancer (oropharynx)
• **March 4 – 7**: An **IMRT plan is prepared**: “1Oropharyn”. Verification plan created by TPS. EPID dosimetry confirms correctness.

• **March 8**: patient treated correctly with “1 Oropharyn”.

• **March 9-11**: Fractions #2, 3 and 4 also correct. Verification images for the kV imaging system are created and added to the plan, now called “1AOropharyn”.
• **March 11:** Physician wants modified dose distribution (reducing dose to teeth) “1AOropharyn” is copied and saved to the DB as “1BOropharyn”

• **March 14:** Re-optimization for “1B Oropharyn”.
 - New optimal fluences saved to DB.
 - MLC motion control points for IMRT generated. Normal completion.
What happened?

- **March 14**
 - “Save all” is started. All new and modified data should be saved to the DB.
 - In this process, data is sent to a holding area on the server, and not saved permanently until ALL data elements have been received.
 - Data to be saved included: (1) fluence data, (2) DRRs and (3) MLC control points
What happened?

- March 14, 11 a.m.
- fluence data is saved normally.
 - Next in line is the DRR. The “Save all” process continues but is not completed.
 - Saving of MLC control point data would be after the DRR, but will not start because of the above.
What happened?

- **March 14, 11 a.m.**
 - An error message is displayed.
 - The user presses “Yes”, which begins a second, separate, save transaction.
 - MLC control point data is moved to the holding area.

Error message displayed. It’s purpose is so that you can click `yes’ or `ok’ or `proceed’
What happened?

• March 14, 11 a.m.
 • The DRR is, however, still locked into the faulty first attempt to save.
 • This means the second save won’t be able to complete.
 • The software would have appeared to be frozen.

The frozen state of the second “Save All” progress indication
What happened?

- **March 14, 11 a.m.**
 - Within 12 s, another workstation is used to open the patients plan to load into VARIS and to treat.
What happened?

• March 14, 11 a.m.
 • **No verification plan**, no pre-treatment dosimetry, no review by 2nd physicist
 • Several computer crashes ignored and over-ridden.
 • Plan approved by physician
What they didn’t notice:
What they should have seen:
• March 14, 2005, 1 p.m.

• Expected display:
- March 14, 2005, 1 p.m.
- What they also didn’t notice:
Discovery of accident

- **March 14-16, 2005**
 - The patient is treated without MLCs for 3 fractions.
 - On March 16, a verification plan is created and run on the treatment machine. The operator notices the absence of MLCs.
 - A second verification plan is created and run with the same result.
 - The patient plan is loaded and run, with the same result.

Impact of accident

- The patient received 13 Gy per fraction for three fractions, i.e. **39 Gy in 3 fractions**.
Was there a bug in the Varian software:

Of course, but the software had a lot of help:

1. Error messages ignored and not investigated
2. Treatment plan QA not performed
3. No 2nd physics check
4. MD rushed the plan modification
5. Therapists weren’t watching MLC display
And The Beat Goes On.....
grandchildren, nieces, and nephews of radiation therapy accidents

Moffitt Cancer Center, Tampa, Fla., 2004-5. 77 SRS patients overdosed >50% because PDD factor not used in TG-51 calibration. Uncovered after 1 year during RPC inspection for participation in RTOG.

CoxHealth, Springfield, Mo., 2004-09. 76 SRS patients overdosed >50 percent. Used too large a dosimeter to calibrate SRS fields. No independent check, no mandated state or federal reporting requirement, no requirement for physicists or therapists to be certified.
And The Beat Goes On.....

UK, 1982-90: incorrect SSD correction (did not know how TPS worked). 1045 patients, 30% underdose, >492 RT failures
Bend, Oregon, 1980’s: incorrect TPC. 13% overdose
Spain, 1990: Linac ‘repair’ led to 36MeV e- beam no matter what was programmed. No dosimetry check. 27 patients, 15 deaths
France, 2004: incorrect MU for dynamic wedge. 23 patients overdosed 20%, 4 deaths
Glasgow, 2006: incorrect calculation of MU. Planner thought TPS calculated MU/ Gy and not MU/ fraction. It didn’t! 67% overdose results in death
France, 2006-7: large ion chamber used for SRS. 145 overdoses.
How to make high tech radiation therapy safe:

Step 1:
Make low tech radiation therapy safe!

Arguably, high tech radiotherapy isn’t safe because it’s being given by the same idiots who still haven’t figured out how to make low tech radio-therapy safe!

(possst - is he talking about us?)
Radiation Accidents: Common Threads

new equipment + new software
 + new physicist = systematic error

understaffing, overworking, undertraining

no internal redundancy, no external audits

no common sense, no time outs

no communication, no central reporting

manufacturer and institutional denial

unusual clinical results ignored
Radiation Accidents: Common Threads

unusual clinical results not followed up

sometimes the only independent backup dosimeter for detecting systematic dosimetry or calculational errors are the patients!
Use of High Tech in Surgery

Position in the pecking order

Number of chances to misuse hi-tech

MD’s

Nurses

Technicians

e.g.; robotics, lasers, laproscopic
Use of Hi-Tech in RT: inverted training/ culpability Pyramid

- Position in the pecking order
- Number of chances to misuse hi-tech

MD’s
Physicists
Dosimetrists
Therapists

Therapist
Dosimetrists
Physicists
MD’s

e.g.; Linac, MLC, IGRT, R/V, treatment planning
Special Dangers of Hi-Tech

1. Systematic errors harder to detect
2. Humans get complacent. Don’t really check computers
3. Many treatment components too complex for humans to check (e.g., DMLC files, MU for IMRT)
4. Many treatment aids/devices are invisible
5. Errors made on day 1 can propagate
6. Programmers don’t understand what we do
7. We don’t understanding what programmers do
8. Too easy to `over ride`
9. Manufacturers training programs often inadequate
Nothing is foolproof for the sufficiently talented fool

R/V systems, computer controlled Linacs, image guided patient positioning systems, etc. reduce but do no prevent errors. They enable humans to make different kinds of mistakes faster and more efficiently.
Types of Human Errors (most → least likely)

1. Staff follows policy, but makes human error (e.g.; policy says treatment plan to be checked before first treatment, but second checker fails to detect error)

2. Staff does not follow policy (e.g.; treatment plan not checked)

3. Policy deficient (e.g.; there was no policy to check plan). Most common for new technology

4. Zebra errors: bizarre sequence of events, almost impossible to foresee or prevent
Who discovered the reported event?

- Mainly Radiation Therapists on the treatment units

- Therapist (treatment unit) 69%
- Physicist 13%
- Therapist (Sim/CT) 7%
- Oncologist 4%
- Other 5%
- Dosimetrist 2%
At what “check-station” did the discovery happen?

- Mainly at chart check. However, most discoveries through “vigilance” at time of treatment.
The End