

RAMPS-GNYCHPS 2010 Spring Symposium New York, NY, April 30, 2010 Error Prevention and Patient Safety for Radiation Treatment and Diagnosis

Radiotherapy and Radiology in the 21st Century: Risks and Benefits

Radiology

Pat Zanzonico, PhD

Member and Attending Physicist Memorial Sloan-Kettering Cancer Center New York, NY

For slides, reprints etc ZanzoniP@MSKCC.ORG

Radiologic procedures are on the rise...

Between 1970and 2005 in US, annual # of

Nuclear Medicine procedures from 3.5M to 17M

↑ <u>5X</u>

Nuclear Cardiology

FDG PET & PET-CT

CT procedures from 3M to 60M

20X

Spiral CT (2-sec scans)

Background Radiation

Mettler et al. Radiology 253: 520-531

Manmade

2006

Total

Radiation Injury in Diagnostic Nuclear Medicine and Radiology

- Stochastic
 - Carcinogenesis
 - ♦ Germ-cell mutagenesis

Neel et al. Am J Hum Genet 1990

- A-Bomb survivor data (n ≈ 12,000):
 No effect @ mean gonadal Ds = 36 rad
- ◆ Teratogenesis

Otake et al. RERF Tech Report 16-87, 1990 A-Bomb survivor data (n ≈ 1,600):
 Threshold Ds ≈ 10s of rads → No radiogenic abortions or congenital defects @ Dx doses

Stewart et al. Lancet 1990 Oxford Survey of Childhood Cancers:
 ~50% increase in incidence of childhood cancer per rad in utero, but total incidence (300 vs 200 per 10⁶ births) very low

Radiation Injury in Diagnostic Nuclear Medicine and Radiology

Deterministic

Balter et al. Radiology 2010

- **♦** Skin injury
 - 200 rad: Threshold → >1,500 rad: Ulceration
 Sx repair

Shope. Radiographics 1996

- Fluoroscopically-guided interventions
 - ~0.1% significant skin injuries (1992-95)

3 yr postcoronary angiography & angioplasty

◆ CT overdose

FDA Alert, 10/8/09

- Brain perfusion studies in >200 stroke pts
 @ Cedars-Sinai (over 18 months, 2008-09)
- 300-400 rad (vs 50 rad) to head → Hair loss, Erythema
- Human error Incorrect CT parameters
 - No check of displayed CTDI, DLP

Carcinogenesis remains the concern in diagnostic imaging.

CT and Cancer Induction?

Brenner and Hall. N Engl J Med 357:2277-84, 2007

2% of all cancers in US attributable to CT!

Dose-Response Models

Types of Radiation Exposures

<u>Internal</u>

- D calculated
- Whole-body Systemic effects?

60¬ Incidence of Ovarian Tumors

% rat pups (n = 281) with congenital abnormalities following 150 rad in utero

	Dose rate (rad/min)			
	100	30	1	0.5
Microcephaly	9.1	41	20	0
Anencephaly	30	14	3	0
Absent kidney	21	6	2.6	0
Cleft palate	52	38	18	12
Limb malformation	44	16	3.1	1.3

Absorbed Dose (rad)

External

- Hi D
- D measured
- Partial-body Local effects only?

Brent et al. Rad Res 1971

Ullrich and Storer. IAEA/STI/PUB/489,1978

15-Country Collaborative Study of Cancer Risk among Radiation Workers in Nuclear Industry Cardis et al. Rad Res 167: 396-416, 2007

- ➤ 15-Country collaborative cohort study of cancer risk among 407,391 nuclear industry workers monitored individually for external radiation and with average follow-up > 10 year
- Dose-related increase in all cancer mortality

- n: 5,233 deaths

- ERR/Sv: 0.97

- 90% CI: 0.28 - 1.77

- ED ≈ 2 mSv (2 rad) Significantly increased cancer risk @ < 150 mSv (15 rad)
- Caveats (Dauer et al.)
 - Exclusion of workers from previous 3-country study risk showing no increased cancer risk*
 - No smoking data More smokers among higher-D/ higher-risk workers?

- Notably high Canadian risk estimates Dosimetry?
- Large error bars

Projected Excess Cancer Risk in Pediatric Osteosarcoma Patients Undergoing Tl201 Scanning Kaste et al. AJR 194: 245-249, 2009

• 73 patients - 32 males, 15 yo

- 41 females, 14 yo

• 3 studies - 4.4 mCi /study

- BSA-adjusted

• ED - males: 19 rem

- females: 22 rem

BEIR VII risk ERRs

Measured Excess Thyroid Cancer Risk in Thyroid Patients Undergoing I131 Dx Dickman et al. Int J Cancer 106: 580–587, 2003

Sweden

1952-1969

•> 20-yr FU

Individual thyroid dosimetry

	No prior neck XRT		Prior neck XRT	
Reason for I131 Dx	Thyroid cancer?	Other	Thyroid cancer?	Other
n	11,015	24,010	608	1,159
# Thyroid Cancers	69	36	12	12
Male, Female (%)	14, 86	23, 77	18, 82	25, 75
Age - 1 st Exposure (yr)	44	43	53	51
- % < 20 yo	6	7	0	2
Total AA (mCi)	0.068	0.043	0.095	0.084
Thyroid Uptake (%)	39	38	36	36
Total Thyroid Dose (rad)				
< 25 - SIR *	3.7	0.45	18	6.9
- 95% CI	1.6-7.3	0.15-1.1	0.47-103	0.84-25
25-50 - SIR *	3.8	1.1	11	0
- 95% CI	2.0-6.6	0.43-2.2	0.28-62	0-17
50-100 - SIR *	2.6	0.86	11	4.1
- 95% CI	1.3-4.8	0.37-1.7	1.3-39	0.10-23
>100 - SIR *	3.7	1.3	15	11
- 95% CI	2.6-5.0	0.73-2.1	6.3-29	5.0-21

Threshold > 100 rad?

^{*} SIR, Standardized Incidence Ratio = Observed / Expected # of thyroid cancers

Dose-Reduction Strategies in CT

- Reduce tube voltage (kVp)
 x-ray flux & dose ∝ kVp²
- Reduce tube current (mA)
 x-ray flux & dose ∞ mA

Applicationand Patientadapted CT protocols becoming the standard

EKG-controlled tube current modulation (ECTCM)
 Cardiac motion least during diastole, greatest during systole → Image quality best during systole, worst during systole → EKG-triggered mA reduction during systole

Reduces ED
for MSCT
coronary
angiography
>50% without loss of
diagnostic
information
content

Radiation Dosimetry in PET (and SPECT)

Dose					
FDG		(rem)			
PET-CT	¹⁸ FDG	PET w/ ⁶⁸ Ge	PET-CT w/ "Low-Dose"	PET-CT w/	
	10 mCi	Transmission Scan*	CT *	"Diagnostic" CT *	
Bladder	4.4	4.4	4.4	6.8	
Bone Marrow	0.48	0.49	0.53 CT	2.3	
Breasts	0.34	0.35	0.38	1.8	
Liver	0.58	0.60	0.66	3.2	
Lungs	0.64	0.66	^{0.70} PET	2.5	
Ovaries	0.48	0.51	0.54	2.4	
Effective Dose	1.1	1.1	2.0	3.3	
Transmission Scan Contribution		3%	Cylinder filled w 49% aqueous solution o		
	ED Critic	cal Organ kVp	120	140	
	(rem)	(rad) mAs	64	190	
Radiotracer	1-2	3-4 Pitch	1.5	1.25	
"Low-dose" CT Total	1 2-3	1 4-5	Attenuation Correction + Anatomy	Diagnosis	

Adapted from NUREG/CR-6345 1996.

Groves et al. Br J Radiol <u>77</u>: 662, 2004. Huda & Vance. AJR 188: 540, 2007. Fahey. Radiology on-line/pre-print, 2007. * No difference in SUVs

Kamel et al. Eur J Nucl Med 29: 346, 2002.

Risk-Benefit Analyses: Example ¹⁸FDG PET in pre-operative assessment of suspected NSCLC

Conventional pre-op work-up → **Thoracotomy:** 81% (78 / 97) Thoracotomy futile:

41% (39 / 78)

Conventional pre-op work-up \rightarrow Thoracotomy: w/PET

65% (60 / 92)

21% (19 / 60) Thoracotomy <u>futile</u>:

Surgey (Sx)-related mortality:

6.5%

w/PET

→ Avoided <u>futile</u> Sx: 20%

Van Tinteren et al. Lancet 359: 1388, 2002

• New lung cancers in US (2006):	174,470	/yr
• Conventional are an work up . Futile Cy doothor	2 766	ls and

Conventional pre-op work-up \rightarrow Futile-Sx deaths: 3,/00

Conventional pre-op work-up \rightarrow Futile-Sx deaths: 1,547 /yr

+ PET

Gross benefit of pre-op PET - Lives saved w/ PET: 2,219 /yr

¹⁸FDG ED / 10 mCi: 0.7 rem

Excess cancer deaths (@ 0.05%/rem): /yr

Net benefit of pre-op PET - Lives saved w/ PET: 2,142 /yr

Summary and Conclusions

- Other than for I131 (thyroid), there are no data on excess risk in Dx
 - ♦ Joy ver lity of Newcastle on Tyne str dy pending
 - C ver si Mea unid s'ojected ix essi ks Light in e in dose (stin. 15 3 15)-57%
- Implications (eg for Dose-rate effect) of "Radiation Worker" study (Cardia et al. 2007)?
- For Dx & Tx I131 (thyroid):
 - ♦ No excess thyroid cancer risk @ thyroid doses up to 100 rem
 - ♦ No excess leukemia risk @ marrow doses up to 20 rem
- Practical threshold for cancer induction: 10s of rem?