Isoeffective Dose Display (EQD2) for Composite Plan of Radiosurgery and Conventional 3D Radiotherapy

Y. Zheng, PhD, J. Yuan, PhD, J. Fabien, MS, C. Woods, MD, M. Machtay, MD, B. Wessels, PhD
Problem

Direct addition of doses between plans with different fractionation fails to provide accurate dose-response information to anticipate clinical outcome.
To consider cumulative dose for multiple courses of treatment:

- **Direct / Linear Addition of Dose**
 - Acceptable when comparing similar fraction sizes

- **Conversion to BED**
 - Provides accurate biological effects to predict outcomes, but…

 Nobody thinks in BED – decades of experience administering 2 Gy fractions
Solution

We desired a method to display combined volumetric dose distributions across different modalities and fractionation schemes that would be meaningful to those interpreting it.

1. **Calculate a factor** for each treatment course based on biological effect compared to 2 Gy fractions

2. **Scale RTDose distributions** using this factor and MIM software

3. **Fuse images** from each treatment course

4. **Combine RTDose distributions** for easy viewing and DVH information
BED – Biologically Effective Dose

BED (Gy) is a single quantity which may be used to compare dose given:

- at different dose rates
- to different tissues with different repair times
- or, with different fractionation schemes

\[
BED = Nd \left(1 + \frac{d}{\alpha / \beta} \right)
\]

where:
- \(N \) is the number of fractions
- \(d \) is the dose per fraction
- \(\alpha / \beta \) ratio is associated with tissue sensitivity and repair
EQD2 – Equivalent Dose in 2 Gy Fx

EQD2 is the BED value converted back to an equivalent dose in traditional 2 Gy fractions:

\[
BED = EQD \times 2 \times \left(1 + \frac{2}{\alpha / \beta}\right)
\]

or, combining equations:

\[
Nd = EQD \times 2 \times \frac{\left[1 + \frac{2}{\alpha / \beta}\right]}{1 + \frac{d}{\alpha / \beta}}
\]
EQD2 – Equivalent Dose in 2 Gy Fx

To make it simple, consider a “2 Gy fraction conversion factor”, C:

$$EQD_2 = Nd \times C$$

which will depend on the fraction size and \(\alpha/\beta\) ratio for each case.
EQD2 – Equivalent Dose in 2 Gy Fx

Ideally, each voxel would have its own conversion factor based on:

- Dose received at that voxel
- α/β of the specific tissue in the voxel

Instead, we used a single conversion factor based on:

- Prescription dose – conservative outside target volume
- α/β of the tissue of concern – early or late effects
Patient Case #1

GammaKnife to Cerebellum

- 18 Gy x 1 fraction
- December 2011

Whole Brain RT

- 3 Gy x 10 fractions
- February 2012
Whole Brain
3 Gy x 10
Feb. 2012
$\alpha/\beta = 2.5$
$C = 1.22$

GammaKnife
18 Gy x 1
Dec. 2011
$\alpha/\beta = 2.5$
$C = 4.56$
Whole Brain
3 Gy x 10
Feb. 2012
\(\alpha/\beta = 2.5\)
\(C = 1.22\)
\(\text{EQD}_2 = 36.6 \text{ Gy}_2\)

GammaKnife
18 Gy x 1
Dec. 2011
\(\alpha/\beta = 2.5\)
\(C = 4.56\)
\(\text{EQD}_2 = 82.1 \text{ Gy}_2\)
Linear Dose Summation
Max Dose = 60.5 Gy
Max Brainstem EQD2 = 28.1 Gy

EQD2 Dose Summation
Max EQD2 = 178.5 Gy
Max Brainstem EQD2 = 46.7 Gy
Patient Case #2

CyberKnife to Sacrum

- 15 Gy x 1 fraction
- January 2009

3D Bilateral Pelvis

- 3 Gy x 10 fractions
- June 2010

CyberKnife to Sacrum

- 10 Gy x 1 fraction
- November 2010
Cyberknife Sacrum
15 Gy x 1
Jan. 2009
$\alpha/\beta = 2.5$
$C = 3.89$

L/R Pelvis
3 Gy x 10
Jun. 2010
$\alpha/\beta = 2.5$
$C = 1.22$

Cyberknife Sacrum
10 Gy x 1
Nov. 2010
$\alpha/\beta = 2.5$
$C = 2.78$
Cyberknife Sacrum
15 Gy x 1
Jan. 2009
α/β = 2.5
C = 3.89
EQD2 = 58.4 Gy

L/R Pelvis
3 Gy x 10
Jun. 2010
α/β = 2.5
C = 1.22
EQD2 = 36.6 Gy

Cyberknife Sacrum
10 Gy x 1
Nov. 2010
α/β = 2.5
C = 2.78
EQD2 = 27.8 Gy
EQD2 Dose Summation
Max EQD2 = 132.9 Gy
Max Sacral Nerve EQD2 = 87.8 Gy

Linear Dose Summation
Max Dose = 55.5 Gy
Max Sacral Nerve EQD2 = 28.8 Gy
Improvements to the Method

1. Automated workflow in MIM

2. Voxel-by-voxel calculation

3. Overestimation of BED at high dose per fraction
 - LQL model
 - gLQ model

4. Incorporation of repair time
 - Between courses of treatment (months – years)
 - Within course of treatment (daily, EOD, BID)
 - Within fraction (treatments lasting > 15 minutes)
Conclusions

1. **Successful method to display dose based on equivalent biological effect** in 2 Gy fractions

2. **Generally conservative outside the target region** (<Rx dose), and underestimates hot spots within the target (>Rx dose).

3. **Depends greatly on** α/β, so create a distribution for early effects ($\alpha/\beta \sim 10$) and late effects ($\alpha/\beta \sim 2.5$)

4. **Somewhat laborious process** that would be improved with a workflow script