Quantitative Angiography

A new frontier in hepatic intervention

Sarvesh Periyasamy
Shortcomings of Current TACE Practice

Identification arteries feeding tumor is subjective

Identification of stasis endpoint is entirely visual (reflux from overembolization)
Optimal Degree of Embolization

- Insufficient tumor necrosis
- Increased damage to healthy tissue

Blood Flow

Degree of Embolization
There is no *objective, intra-procedural* metric for when to end embolization
Quantifying Blood Velocity Using DSA

\[d: \text{distance of bolus transit} \]

\[\tau: \text{time of bolus transit} \]

Intensity [AU]

cardiac pulsatility

time [s]
Finding the temporal shift in time-concentration curves

Shifted Least-Squares Algorithm

$$\varepsilon(\tau_{ij}) = \frac{1}{T} \sqrt{\sum_{t=1}^{T} [c_i(t - \tau_{ij}) - c_j(t)]^2}$$

shifted least squares difference
Shifted least-squares algorithm

\[\varepsilon(\tau_{ij}) = \frac{1}{T} \sqrt{\sum_{t=1}^{T} [c_i(t - \tau_{ij}) - c_j(t)]^2} \]

find \(\tau^0_{ij} \) which minimizes \(\varepsilon(\tau_{ij}) \)

\[\tau^0 = \alpha \cdot d + b \]

where \(\alpha = \frac{1}{velocity} \)
Visualization of Contrast Waveform along Centerline

- Time [s]
- Position along centerline [pixel]
- Proximal
- Distal
Feasibility of a DSA Quantification Method

1. Hepatic blood flow in patients is heterogeneous
 - Different heart rates and blood pressures

2. Hepatic blood vessel location in patients are heterogeneous
 - Different degrees of vessel overlap
1. Hepatic blood flow in patients is heterogeneous
2. Hepatic blood vessel location in patients are heterogeneous
DSA Quantification in an *in vivo* Porcine Model

- **left hepatic artery**
- **embolization site**
- **left hepatic artery**
Incremental embolization decreases calculated blood velocity until complete stasis is achieved, at which point turbulent flow and reflux affect velocity calculations.
Conclusions

A shifted-least squares approach for quantifying blood velocity in hepatic DSAs may represent a way to objectively standardize embolization procedures

- Shows in vitro immunity to the effects of variation in contrast injection rates and non-optimal projection angles
- Demonstrates a progressive decrease in velocity with increased degree of embolization in vivo
Future Work

- Develop an embolization-flow reduction curve by titrating amount of embolic particles delivered.
- Utilize 4D-DSA flow calculations to bookend procedure and validate flow reduction calculations.
- Analyze liver samples to see if calculated flow reductions correlate with tissue-level changes.

Relative Velocity vs. Amount of Embolic Particles Delivered

- The graph shows a decrease in relative velocity as the amount of embolic particles delivered increases, reaching a minimum point before increasing again.

Pathology Apps
Acknowledgements

Advisors
Dr. Paul Laeseke
Dr. Michael Speidel

Collaborators
Carson Hoffman

Image-Guided Interventions Lab
Yijing Wu Brian Davis Katrina Ruedinger
Martin Wagner Joe Whitehead Sebastian Schaefer
Evan Hansen Ethan Nicklau
Erick Oberstar Lindsey Brodart

Funding
Medical Scientist Training Program
UNIVERSITY OF WISCONSIN
SCHOOL OF MEDICINE AND PUBLIC HEALTH

Department of Radiology
UNIVERSITY OF WISCONSIN
SCHOOL OF MEDICINE AND PUBLIC HEALTH

GPU Donation
NVIDIA®
Transarterial chemoembolization (TACE) uses chemotherapy-coated embolic particles to block blood flood flow to the tumor and causing ischemia and necrosis.