Dosimetric Impact of Silastic Insert Thickness in COMS Eye Plaque for I-125 Brachytherapy

Courtney Oare
NCC-AAPM Spring Meeting
La Crosse, WI
April 26th, 2019
Background- Ocular Melanoma

- 1400 cases of ocular melanoma are diagnosed annually
- Treatment options:
 - Radiation Therapy (>75%)
 - Eye plaque
 - Proton therapy
 - Gamma Knife
 - Enucleation (<25%)

Aronow et al. 2018
Background- COMS

- 1985 Collaborative Ocular Melanoma Study (COMS) was formed to evaluate two methods of tumor control and survival:
 1) 20 Gy external beam therapy prior to enucleation vs. no radiation prior to enucleation
 • *Radiation did not improve survival*
 2) Enucleation compared to I-125 eye plaque therapy
 • *No difference in survival!*

- COMS findings standardized plaque brachytherapy
Background- COMS Plaque

A. Iodine-125 seeds
 - Mean photon energy: 28 keV
 - $T_{1/2}$: 59.4 days

B. Silastic seed carrier insert
 (Dow Corning Corp., Midland, MI)
 - MDX-4210, a medical grade elastomer
 - Places seed 1mm from Sclera

C. Gold-alloy backing
 (Trachsel Dental Studio, Rochester, MN)
 - 10 – 22mm
Problem: Inconsistent Silastic Thickness

- The COMS Silastic insert is described as 2mm thick, placing source 1mm from Sclera
- Inserts appear to be manufactured with varying thickness
 - Especially for large, 22mm plaques
 - Added thickness increases distance between source and prescription point
 - How does this effect dose to the tumor? Normal eye structures?

Chiu-Tsao et al., Med Phys 2012
Methods

1) Measure thickness of 13 inserts
 - All 22mm COMS plaque
 - Digital Caliper used to measure the lip height, and determine thickness

2) Dose Calculations using BrachyVision (TG-43)
 - Vary distance from source to prescription point based on ranging Silastic thickness (2, 2.5 or 3mm)
 - Account for different tumor apex heights (5, 7, 10mm)
 • Adjust activity to deliver 85 Gy to tumor apex (as recommended by American Brachytherapy Society)
 - Calculate doses to critical structures
 • tumor apex, sclera, lens, macula, opposite retina, and optic disk
Results: Measured Silastic Thickness

- Based on measurements, inserts were grouped into standard, medium, and thick.
- Mean thicknesses were rounded to the nearest half millimeter (2, 2.5, 3mm).

<table>
<thead>
<tr>
<th>Grouping</th>
<th>n</th>
<th>Mean (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>5</td>
<td>1.93 → 2</td>
</tr>
<tr>
<td>Medium</td>
<td>2</td>
<td>2.36 → 2.5</td>
</tr>
<tr>
<td>Thick</td>
<td>6</td>
<td>3.22 → 3</td>
</tr>
</tbody>
</table>
Results: Dose Calculations

- Percent prescription dose (%PD), relative to 85 Gy at the tumor apex, is determined for critical eye structures based on:
 1) Silastic Thickness
 2) Tumor Size

<table>
<thead>
<tr>
<th>Silastic</th>
<th>Standard, 2mm</th>
<th>Medium, 2.5mm</th>
<th>Thick, 3mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Apex Size:</td>
<td>5mm 7mm 10mm</td>
<td>5mm 7mm 10mm</td>
<td>5mm 7mm 10mm</td>
</tr>
<tr>
<td>Tumor Apex</td>
<td>100.3 100.0 99.8</td>
<td>92.6 92.7 92.9</td>
<td>85.8 86.0 86.6</td>
</tr>
<tr>
<td>Sclera</td>
<td>268.7 364.6 568.1</td>
<td>232.3 315.1 491.1</td>
<td>204.9 277.9 433.1</td>
</tr>
<tr>
<td>Lens Center</td>
<td>27.6 37.5 58.4</td>
<td>25.9 35.1 54.8</td>
<td>24.3 33.0 51.4</td>
</tr>
<tr>
<td>Macula</td>
<td>41.6 56.4 87.9</td>
<td>38.7 52.5 81.8</td>
<td>36.1 48.9 76.3</td>
</tr>
<tr>
<td>Opposite Retina</td>
<td>10.7 14.5 22.6</td>
<td>10.1 13.8 21.4</td>
<td>9.6 13.1 20.3</td>
</tr>
<tr>
<td>Optic Disk</td>
<td>52.1 70.6 110.1</td>
<td>48.0 65.1 101.5</td>
<td>44.4 60.2 93.9</td>
</tr>
</tbody>
</table>
Results: Dose Calculations (cont.)

- As Silastic thickness increases, %PD decreased
- As tumor apex increases, %PD to normal eye structures increased, as expected

<table>
<thead>
<tr>
<th>Silastic</th>
<th>Standard, 2mm</th>
<th>Medium, 2.5mm</th>
<th>Thick, 3mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Apex Size:</td>
<td>5mm 7mm 10mm</td>
<td>5mm 7mm 10mm</td>
<td>5mm 7mm 10mm</td>
</tr>
<tr>
<td>Tumor Apex</td>
<td>100.3 100.0 99.8</td>
<td>92.6 92.7 92.9</td>
<td>85.8 86.0 86.6</td>
</tr>
<tr>
<td>Sclera</td>
<td>268.7 364.6 568.1</td>
<td>232.3 315.1 491.1</td>
<td>204.9 277.9 433.1</td>
</tr>
<tr>
<td>Lens Center</td>
<td>27.6 37.5 58.4</td>
<td>25.9 35.1 54.8</td>
<td>24.3 33.0 51.4</td>
</tr>
<tr>
<td>Macula</td>
<td>41.6 56.4 87.9</td>
<td>38.7 52.5 81.8</td>
<td>36.1 48.9 76.3</td>
</tr>
<tr>
<td>Opposite Retina</td>
<td>10.7 14.5 22.6</td>
<td>10.1 13.8 21.4</td>
<td>9.6 13.1 20.3</td>
</tr>
<tr>
<td>Optic Disk</td>
<td>52.1 70.6 110.1</td>
<td>48.0 65.1 101.5</td>
<td>44.4 60.2 93.9</td>
</tr>
</tbody>
</table>
Results: Dose Calculations (cont.)

[Bar chart showing % Prescription Dose for different eye structures and thicknesses.]
Results: Dose Calculations (cont.)

- As Silastic thickness increases, %PD decreased
Discussion

• Unaccounted for, thick silastic inserts will add distance from source to tumor apex
 – ~7% loss of prescription dose for each additional 0.5mm of Silastic thickness

• Even larger effects would be expected after heterogeneity corrections
 – TPS measurements consider only water ($Z_{\text{eff}}=7.4$), not Silastic ($Z_{\text{eff}}=11$)
 – Higher electron density → Silastic is more attenuating

• Normal eye structures saw reduction in dose
 – Distance is advantageous in this case
Conclusions

• As Silastic insert thickness increases, the tumor receives a lower dose than prescribed
• Recommendations:
 – Quality Assurance procedures should be developed to verify Silastic insert thickness
 – Communicate with vendor if Silastic molds are not in agreement with standards
Acknowledgments

• Clara Ferreira
• David Sterling
• Dara Koozekanani
• Kathryn Dusenberry
References