Imaging of Radiation Dose Using Cherenkov Light

Eric Brost1, Yoichi Watanabe1, Fadil Santosa2, Adam Green3

1Department of Radiation Oncology, University of Minnesota
2Institute for Mathematics and it’s Applications, University of Minnesota
3Department of Physics, University of St. Thomas
Imaging of Cherenkov light during radiation therapy

- Quality assurance
- Surface dosimetry
- Molecular imaging

Thesis project goals

1. **Determination of optical correction factors necessary to perform Cherenkov dosimetry**

2. Examine feasibility of Cherenkov imaging on C-RAD Catalyst system
Outline

• Background
• Related Research
• Cherenkov Imaging Dosimetry
Cherenkov Radiation Production

Incident radiation (gamma or electron)

Index of refraction: \(n \)

Particle velocity: \(v_p \)

\(\theta_c = 43^\circ \) (2 MV beam in water)

Conical emission angle: \(\theta_c = \cos^{-1}\left(\frac{1}{\beta n}\right) \)

Ratio of velocity to speed of light: \(\beta = \frac{v_p}{c} \)
Cherenkov Light Characteristics

• The number of photons, N, emitted per unit path due to the Cherenkov effect:

$$\frac{dN}{dx} \propto \left[1 - \frac{1}{\beta^2 n^2} \right] \frac{1}{\lambda^2} d\lambda$$

 Lower limit of Cherenkov emission

• For a 6 MeV electron beam delivering 100 cGy to water at a rate of 600 MU/min:
 • 600 photons/electron
 • 6-10 photons/electron from surface
 • 3×10^{11} detectable photons
 • 8×10^{-10} Watts
Cerenkov Light - Relationship to Dose

- Mono-energetic pencil beams, relationship is 1:1 between light emission and dose (<1%)
- Poly-energetic finite beam sizes, error is between 0-5%

Dose: \[D = \frac{1}{\rho} \int \phi \frac{-dT}{dx} \, dE \]

Number of photons: \[N_T = \frac{1}{\rho} \int \phi \frac{-dN}{dx} \, dE \]

Correlation ratio: \[C = \frac{D}{N_T} \]

Set-up of Cherenkov Detection

- **Camera**
 - CMOS, CCD not as viable
 - Triggered to linac output

- **Target material**
 - Water tank or phantom
 - Patient

- **Computer**
 - Timing, camera, software

- **Radiation source**
 - Linear accelerator
 - Radiopharmaceutical

Imaging of Radiation Beams in Water

10x10 cm, 6 MV beam in a quinine sulfate solution
30 sec exposure

2D projection of a C-treatment plan

3D reconstruction using tomography
30 min scan time
±1 mm resolution
Superficial Dosimetry during Radiation Therapy

- Cherenkov light can be related to dose through light intensity
 - Dose is deposited locally by charged particles
 - Cherenkov photons are generated and scattered via Mie and Rayleigh scattering

- ±5% error associated with variations in beam size, angle of incidence, and energy
- ±40% error associated with variations in surface geometry, composition, and tissue pigment

Superficial Dosimetry during Radiation Therapy

• Dosimetry is not possible with the current state of Cherenkov detection
 • Skin reaction detection
 • MLC motion tracking @ 2.5 fps

• Factors that are needed for absolute dosimetry:
 • Luminosity correction
 • Angular scattering correction
 • Absorption correction

 Optical factors = 40% error

• Correlation ratio

 Beam factors = 5% error

Cherenkov Dosimetry Correction Factors

\[Dose = K_L \cdot K_S \cdot K_A \cdot C \cdot Intensity \]

- \textit{Dose} [Gy] is the dose received at the mean depth \((D_M)\)
- \textit{Intensity} [W] is the number of Cherenkov photons imaged on a pixel
- \(C = \text{Correlation ratio [Gy/Cher. photon] for a given beam size, particle, and energy}\)
- \(K_L = \text{Image luminosity correction}\)
- \(K_S = \text{Angular scattering correction}\)
- \(K_A = \text{Absorption correction}\)

Beam factor

Optical factors
Monte Carlo Simulations of Cherenkov Generation

- Gamos was used to determine K_s:
 - Beam size dependence (pencil - 20x20 cm2)
 - Beam angle (0-75°)
 - Beam energy and particle type (6-20 MeV)
 - Mono and poly-energetic beams
 - Tissue and optical phantom materials
- Linac simulations were compared with experiment
Monte Carlo engine

- Physics model
- Particle source
- Geometry
- Radiological properties
- Optical properties
- Scoring filters

Text-based interface for Geant4 + optical transport

Output scoring filters

- High-energy photon transport
- Charged particle generation + transport
- Optical photon generation + transport

Geant4

GAMOS

- Cherenkov light scoring
- Dosimetry scoring
Optical Phantom Scattering Correction, K_s

The graph shows the normalized radiance R/Ω as a function of the observation angle θ_{obs} (degrees). The equation $K_s = \frac{1}{\text{Radiance}}$ is given, indicating the correction factor K_s for optical phantom scattering. The graph includes different simulations and measurements:

- Photon beam sim.
- Electron beam sim.
- Optical phan. measured
- Human skin measured
- Lambertian

The graph illustrates the comparison between simulated and measured data, highlighting the scattering correction effect.
Stratified Skin Scattering Correction, K_s

$$K_s = \frac{1}{\text{Radiance}}$$
Summary

- Cherenkov light can be related to dose deposition – current measurements have high uncertainty
- $Dose = K_L K_S K_A C \text{ Intensity}$
- Monte Carlo simulations were used to find scattering correction factor K_S

Next Steps:
- Solving for K_A and K_L
- Apply formula for skin dosimetry
Acknowledgments

Dr. Yoichi Watanabe
 for acting as my advisor in this research

Dr. Adam Green
 for his continued guidance and advise throughout the
development of this research
References

Image References

2. https://www.youtube.com/watch?v=X0LXJRYzovU, used with the permission of Jacqueline Andreozzi
3. http://www.scint-x.com/media/1748/scint_x_technology1.jpg
C-RAD Catalyst System

- Optically-based patient positioning system
- Uses optical triangulation to obtain 3D coordinates of detected surface
- Automatic patient positioning
- Respiratory gating
- Cherenkov detection?
- Luminosity correction?