The need for standardization of dosimetry in experimental radiation biology

Kurt Pedersen
University of Wisconsin Medical Radiation Research Center
Under the direction of Larry DeWerd, PhD.

NCCAAPM Fall Meeting
October 24, 2014
Motivation

- Radiobiology:
 - Dose vs. Effect
- Requires:
 - Accurate dose
 - Comprehensive dosimetry reporting
- There are concerns that requirements are not being met

Figure 1: Dose-survival curve for control and with administration of Rutin.1

1Patil SL, Somashekarappa H M, Rajashekar K P. Radiomodulatory role of Rutin and Quercetin in Swiss Albino mice exposed to the whole body gamma radiation. Indian J Nucl Med 2012;27:237-42
Motivation

- 28 radiobiology papers were selected
- Dosimetry reporting was reviewed
- Results compared with the recommendations from the 2011 NCI, NIAID, NIST workshop\(^2\)

Motivation

<table>
<thead>
<tr>
<th>Category</th>
<th>Information</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Dosimetry/Calibration</td>
<td>Published Standards Used</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Detector Type Used</td>
<td>3.4</td>
</tr>
<tr>
<td>Determination of Dose</td>
<td>Published Standards Used</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>Specification of Medium</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Detector Type Used</td>
<td>27.6</td>
</tr>
<tr>
<td>Radiation Source Specification</td>
<td>Radioisotope</td>
<td>86.2</td>
</tr>
<tr>
<td></td>
<td>kV, Filtration, HVL</td>
<td>50.0</td>
</tr>
<tr>
<td>Details of the Irradiation</td>
<td>Animal/Cell Type</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Dose Details</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Field Size and Shape</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Geometry of Fields</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>Animal Containment</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1: Percentage of papers compliant with recommended standards for dosimetry reporting.
Irradiator Spot-Checks

- **Spot Checks**
 - Test of dose accuracy of irradiators

- **12 checks performed**
 - Irradiators located in the US and Japan
 - Radionuclide and x-ray irradiators

- **Dose refers to absorbed dose to water**

Figure 2: Kimtron, Inc. cabinet x-ray Irradiator at UWADCL
Figure 3: PMMA Mouse phantoms
Diameter=13.5mm
Length=65mm
Methods and Materials

- **TLDs**
 - Harshaw LiF:MgTi TLD-100 1mm³ microcubes
 - TLDs were handled using the Cameron Method and read using a Harshaw 5500 TLD reader
 - 400°C 1 hour anneal
 - 80°C 24 hour anneal
 - Stored 24 hours between irradiation and readout
 - TLD raw data was corrected for control and relative response

Figure 4: TLD microcubes (courtesy of Samantha Simiele)
Methods and Materials

- **Spot Checks**

Figure 5: Customer irradiation process
Methods and Materials

- **Calibration Irradiation**
 - Two calibration mouse phantoms are irradiated
 - 1 Gy
 - 4 Gy
 - Irradiation is carried out with NIST-traceable beam quality using Advanced X-Ray CP320 x-ray at UWADCL
 - 1 m from source
 - 10x10 field
 - TLDs center of field

Figure 6: Calibration irradiation setup
Methods and Materials

- Air Kerma to Dose Conversion
 - Work by Tina Pike, PhD
 - Monte Carlo calculated conversion factor
 - Calculated for each standard beam quality

\[N_K = \frac{K_{air}}{(D_{chamber} \cdot M_{air})/\left(\frac{\bar{W}}{e}\right)} \]

3Pike, T. Leah. (2012) A dosimetric characterization of an electronic brachytherapy source in terms of absorbed dose to water. [Madison, Wis.: University of Wisconsin-Madison].
Methods and Materials

- Uncertainty in ADW
 - TLD and irradiation: 1.7%
 - Air kerma calibration: 0.45%
 - Dose calculation: 1.7%

- Quadratic sum
 - 2.4%

- Total combined relative uncertainty at $k=2$
 - 4.8%
Radionuclide Irradiator Results

![Bar graph showing percent deviation by facility]

- **Facility 1**, **Facility 2**, and **Facility 3** have similar percent deviations, each around 2%.
- **Facility 4** has a slightly higher percent deviation at around 4%.
- **Facility 5**, **Facility 6**, and **Facility 7** show a significant increase in percent deviation, with **Facility 7** having the highest at around 12%.
X-ray Irradiator Results

![Bar Chart]

- Percent Deviation vs Facility
- Facilities 1 to 5
- Facility 5 has the highest deviation
- Facilities 1 and 2 have the lowest deviation
Conclusions

- Dosimetry reporting in radiobiology articles does not meet the recommended standards
- Many facilities failed to deliver an accurate dose in a simple, well-defined geometry
- Dose accuracy more of a concern with x-ray irradiators
 - X-ray irradiator use expanding
 - Radionuclide irradiators being phased out
Future Work

- Expand the mouse phantom spot check program
 - Test more facilities
 - Allow for follow-up tests
- Reduce the uncertainty in the dose calculation
 - Characterize the UWADCL irradiator
 - Develop Monte Carlo model of irradiator
 - Adjust energy and filtration of calibration beam to match irradiator
 - Perform spot-check of irradiator
 - Apply this method to other sites to closely match beam quality
Thanks

- UWADCL customers for their continued support
- Kimtron, Inc. for their information and assistance
- Keith Kunugi and Cliff Hammer for their work with the mouse phantoms
- Tina Pike, PhD for her Monte Carlo simulations
- Ben Palmer for his assistance with equipment and experimental setup
- Professor Larry DeWerd, Professor Wes Culberson, Samantha Simiele and Michael Lawless for their guidance
- The students and staff of the UWMRRC for their assistance
References

- Pike, T. Leah. (2012) A dosimetric characterization of an electronic brachytherapy source in terms of absorbed dose to water. [Madison, Wis.: University of Wisconsin-Madison].