Topics

- Nuclear Medicine (NM) patient radiation dose
- Image Gently/Image Wisely in Nuclear Medicine
- 2011 NM dose reduction project at Gundersen Lutheran Health System
Media Attention to Radiation Dose

- CT has been the main target of media attention related to radiation dose from medical imaging.

- Radiation dose from nuclear medicine procedures is frequently overlooked despite comparable effective dose.
Effective Dose from Common Exams

Nuclear medicine and PET

<table>
<thead>
<tr>
<th>Imaging Exam</th>
<th>Effective Dose mSv</th>
<th>Months of background radiation for same dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear medicine Bone Scan</td>
<td>6.3</td>
<td>27</td>
</tr>
<tr>
<td>Nuclear medicine PET Scan</td>
<td>7.1</td>
<td>27</td>
</tr>
<tr>
<td>Nuclear medicine Cardiac Perfusion SPECT</td>
<td>17.7</td>
<td>69</td>
</tr>
</tbody>
</table>

Computed Tomography (CT)

<table>
<thead>
<tr>
<th>Imaging Exam</th>
<th>Effective Dose mSv</th>
<th>Months of background radiation for same dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head CT</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Chest CT</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>Abdomen and Pelvis CT</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>Cardiac CT for Calcium Scoring</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Cardiac CT Angiography</td>
<td>15</td>
<td>58</td>
</tr>
</tbody>
</table>

Although CT was the largest medical contributor to collective effective dose to the U.S. pop. in 2006 (24%);

NM was second (12%)

NCRP Report No. 160 Fig. 1.1. Percent contribution of various sources of exposure to the total collective effective dose (1,870,000 person-Sv) and the total effective dose per individual in the U.S. population (6.2 mSv) for 2006
Growth in NM

- Diagnostic NM procedures increased by a factor of 5.5 over 1972-2006, with 5% annual growth over the last decade.

- Reason: advances in instrumentation such as PET/CT and development of new radio-pharmaceuticals.

- PET annual growth rate has ranged from 25% to 50% (IMV Medical Information Division 2006a).

Images: Gundersen Lutheran Health System
Annual National Patient Volume

• The estimated number of NM procedures performed in the US in 2005 is 19.7 million (IMV Medical Information Division 2006b).

• Less than the estimated 62 million CT procedures performed in the US in 2006 (NCRP Report No. 160) but still a large number.

Photo: Gundersen Lutheran Health System
Wide Variation in Pediatric Dose

- A 2008 survey found wide variation in pediatric radiopharmaceutical administered doses among 13 leading pediatric hospitals in North America

NACG

• Pediatric Nuclear Medicine Dose Reduction Workgroup developed *North American Consensus Guidelines for Administered Radiopharmaceutical Activities in Children and Adolescents*

Guidelines recommend appropriate radio-pharmaceutical activities for 11 common pediatric NM procedures

Basis of Image GentlySM 2011 NM campaign, “Go with the Guidelines”

http://www.pedrad.org/associations
Image Gently

- Image Gently℠ was created in 2007 by a coalition of health care organizations (SPR, AAPM, ACR, ASRT)

- Goal: change practice by raising awareness of opportunities to lower radiation dose in pediatric imaging

http://www.pedrad.org/associations
Image Wisely

- ACR/RSNA Joint Task Force on Adult Radiation Protection launched Image Wisely℠ in 2010

- Aim: lower radiation doses used in medically necessary adult imaging studies and eliminate unnecessary procedures

http://www.imagewisely.org/
Gundersen Lutheran Health System

- 2011 implementation of Image Gently in Nuclear Medicine dept at Gundersen Lutheran Health System
 - 3 SPECT/CT units
 - PET/CT scanner
 - Annual NM & PET patient volume ~ 4250 exams
Comparison to NACG

• Site radiopharmaceutical doses for pediatric nuclear medicine procedures were compared with NACG

• Site procedures not included in NACG were compared with European Association of Nuclear Medicine (EANM) Paediatric Dose Card recommendations
 - Lassmann, Biassoni, Monesieurs, Franzius, & Jacobs 2007

• Total of 24 pediatric protocols compared
Some ranges decrease with weight because calculated value for 6 kg fell below minimum recommended activity.

NWBD = no weight-based dose; NL = not listed
<table>
<thead>
<tr>
<th>Radiopharmaceutical Procedure</th>
<th>Site Protocol</th>
<th>North American Consensus Guidelines</th>
<th>European Association of Nuclear Medicine Paediatric Dose Card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight-based range [MBq/kg][6-64kg]1</td>
<td>Min (MBq)</td>
<td>Max (MBq)</td>
</tr>
<tr>
<td>99mTc-IDA (biliary)</td>
<td>3.1 – 2.3</td>
<td>18.5</td>
<td>148</td>
</tr>
<tr>
<td>99mTc-MAG3 renal w/out flow</td>
<td>11.1-5.9</td>
<td>55.5</td>
<td>185</td>
</tr>
<tr>
<td>99mTc-MAG3 renal w/ flow</td>
<td>5.55</td>
<td>37</td>
<td>148</td>
</tr>
<tr>
<td>99mTc-MDP (bone)</td>
<td>24.4-12.7</td>
<td>74</td>
<td>740</td>
</tr>
<tr>
<td>99mTc-pertechnetate (cystography)</td>
<td>19.2-0.35</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>99mTc-pertechnetate (thyroid)</td>
<td>5.6-2.9</td>
<td>18.5 uptake, 37 imaging</td>
<td>18.5 uptake, 37 imaging</td>
</tr>
<tr>
<td>99mTc-RBC (blood pool)</td>
<td>38.9-20.4</td>
<td>74</td>
<td>1295</td>
</tr>
<tr>
<td>99mTc-spleen (denatured RBC)</td>
<td>12.2-20.0</td>
<td>74</td>
<td>1295</td>
</tr>
<tr>
<td>99mTc-Technegas (lung ventilation) (GL uses DTPA)</td>
<td>44.4-34.5 (post perf 88.8-57.7)</td>
<td>1110 (2960 post perf)</td>
<td>1480 (3700 post perf)</td>
</tr>
<tr>
<td>99mTc-MAA perfusion only or after vent</td>
<td>5.6-2.9</td>
<td>11.1</td>
<td>185</td>
</tr>
<tr>
<td>99mTc-MAA perfusion prior to vent</td>
<td>2.2-1.2</td>
<td>11.1</td>
<td>74</td>
</tr>
<tr>
<td>99mTc-pertechnetate Meckel’s diverticulum</td>
<td>5.6-2.9</td>
<td>18.5</td>
<td>185</td>
</tr>
</tbody>
</table>
Evaluation

• Dose comparison was evaluated by:
 ▪ two board-certified nuclear medicine radiologists
 ▪ two board-certified diagnostic medical physicists
 ▪ certified nuclear medicine lead technologist

• All radiopharmaceutical doses were determined to be comparable to NACG or EANM recommendations, except:
 ▪ minimum dose for the pediatric nuclear medicine renogram without flow, which uses 99mTc mercaptoacetyltriglycine (MAG3).
MAG3 renogram w/o flow

- Site minimum dose was 55.5 MBq
 - NACG recommended minimum dose: 37 MBq
 - EANM recommended minimum dose: 40 MBq
- Minimum dose for this exam was reduced to 37 MBq. Clinical images showed no discernable decline in image quality or diagnostic capability, as determined by the two NM radiologists.
• This exam is done on a very young child, often a few months of age or less. Radiation dose estimates for an 8-day-old child were calculated using radiation dose data from the vendor’s package.

• Whole-body dose decreased from 0.36 mSv for 55.5 MBq to 0.24 mSv for 37 MBq (33.3% reduction)
 - Urinary bladder wall dose decreased from 17.2 mSv to 11.5 mSv
 - Gallbladder wall dose decreased from 4.1 mSv to 2.7 mSv.
Low Clinical Impact

- Evaluation of the site pediatric administered doses was a good quality and patient safety project. But clinical impact was low.

- 7232 NM procedures were done at Gundersen Lutheran in 2010-2011.
 - 217 were on patients 0-17 years of age (3.0%)
 - 7015 were on patients 18+ years of age (97%)
 - 7 pediatric renograms were done
 - 3.2% of pediatric exams
 - 0.1% of all exams

Image: http://www.pedrad.org/associations
Unusual Patient Distribution? No.

- Of NM patients in the US in 2003 (NCRP Rep No 160):
 - 2.3% were 0-17 years of age
 - 97.7% were 18+ years of age.

- This is because most exams are cardiac and bone studies, which adults are more likely to require than children.

- Because our Image Gently project affected only a very small fraction of our patients, we added a second phase to the project.
Phase 2: Image Wisely

- Site radiopharmaceutical doses for 52 adult diagnostic nuclear medicine procedures were obtained.

- Comparison with a standard was more difficult because there are no guidelines comparable to NACG or EANM for adult patient radiopharmaceutical doses.
Dose Comparison

• Site doses were compared to doses in NCRP Rep No 160 Table D.5, *Radionuclides, administered activity, dose conversion coefficient, and effective dose per procedure in nuclear medicine*

 ■ Table D.5 doses are based on suggested ranges from textbooks, the Society of Nuclear Medicine (SNM) website, and nuclear medicine practices in a few large hospitals.

• Also compared our doses to those in IAEA Safety Rep No. 40 (2005)
CPT codes

• The names of the site procedures did not always match the procedure names listed in NCRP Report No. 160.

• We used CMS Current Procedural Terminology (CPT) codes to ensure the proper comparison.

• Too much in tables to show it all. Next slide is one page of table.
<table>
<thead>
<tr>
<th>Billing Code</th>
<th>Radiopharmaceutical Procedure</th>
<th>Site Protocol</th>
<th>NCRP Report No. 160<sup>1</sup></th>
<th>IAEA Report No. 40<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>78223</td>
<td>Hepatobiliary imaging<sup>99</sup>Tc-Lidofenin (chol)</td>
<td>NL</td>
<td>148</td>
<td>NL</td>
</tr>
<tr>
<td>78290</td>
<td>Meckel's diverticulum<sup>99</sup>TcO<sub>4</sub></td>
<td>NL</td>
<td>NL</td>
<td>18.5</td>
</tr>
<tr>
<td>78264</td>
<td>Gastric emptying with small bowel transit<sup>99</sup>Tc-sulfur colloid</td>
<td>NL</td>
<td>18.5</td>
<td>NL</td>
</tr>
<tr>
<td>78216/06</td>
<td>Liver spleen imaging<sup>99</sup>Tc-sulfur colloid</td>
<td>NL</td>
<td>185</td>
<td>NL</td>
</tr>
<tr>
<td>78262</td>
<td>Gastroesophageal reflux<sup>99</sup>Tc-sulfur colloid</td>
<td>NL</td>
<td>7.4-37</td>
<td>NL</td>
</tr>
<tr>
<td>78707/8</td>
<td>Renogram with and without Lasix MAG3/DTPA</td>
<td>185/kidney</td>
<td>370</td>
<td>NL</td>
</tr>
<tr>
<td>78710/00</td>
<td>Renal scan<sup>99</sup>Tc-DMSA</td>
<td>NL</td>
<td>185</td>
<td>NL</td>
</tr>
<tr>
<td>78740</td>
<td>Cystogram Na<sup>99</sup>TcO<sub>4</sub></td>
<td>NL</td>
<td>37</td>
<td>NL</td>
</tr>
<tr>
<td>78807</td>
<td>Gallium imaging<sup>67</sup>Ga-citrate - Infection</td>
<td>NL</td>
<td>185</td>
<td>NL</td>
</tr>
<tr>
<td>78805/7</td>
<td>WBC study<sup>111</sup>In-oxine</td>
<td>NL</td>
<td>18.5-37</td>
<td>NL</td>
</tr>
<tr>
<td>78805</td>
<td>WBC study<sup>99</sup>Tc-HMPAO CereTec</td>
<td>NL</td>
<td>370-740</td>
<td>NL</td>
</tr>
<tr>
<td>78803</td>
<td>Prostastint<sup>111</sup>In-capromab pendetide</td>
<td>NL</td>
<td>185</td>
<td>NL</td>
</tr>
<tr>
<td>78630</td>
<td>Cisternogram<sup>111</sup>In-DTPA</td>
<td>NL</td>
<td>18.5-27.8</td>
<td>NL</td>
</tr>
<tr>
<td>78650</td>
<td>CSF leak<sup>111</sup>In-DTPA</td>
<td>NL</td>
<td>18.5-27.8</td>
<td>NL</td>
</tr>
<tr>
<td>78580</td>
<td>Lung perfusion scan<sup>99</sup>Tc-MAA (perfusion only or after lung vent)</td>
<td>NL</td>
<td>185</td>
<td>NL</td>
</tr>
<tr>
<td>78588/0</td>
<td>Lung perfusion scan<sup>99</sup>Tc-MAA (before lung ventilation imaging)</td>
<td>NL</td>
<td>74</td>
<td>NL</td>
</tr>
<tr>
<td>78596</td>
<td>Lung perfusion scan<sup>99</sup>Tc-MAA (quant. lung only)</td>
<td>NL</td>
<td>185</td>
<td>NL</td>
</tr>
</tbody>
</table>
Evaluation

• Same committee evaluated the comparison of the 52 site protocols.

• All doses were comparable to NCRP Report No. 160 values or IAEA Report No. 40 values except:
 - 99mTc sulfur colloid egg yolk gastric emptying study
99mTc Sulfur Colloid Egg Yolk Gastric Emptying Study

- Site administered Dose was 111 MBq
 - NCRP Rep No 160 dose: 14.8 MBq
 - IAEA Report 40 dose: 12 MBq

- Dose was reduced to 37 MBq

- Trial of 10 patients was done. Clinical images of the 10 examinations using the revised protocol showed no discernable decline in image quality or diagnostic capability
Radiation Dose Reduction

- Radiation dose estimates for a 70-kg adult were calculated using radiation dose data from the vendor’s package insert.

- Whole-body dose decreased from 0.67 mSv for 111 MBq to 0.19 mSv for 37 MBq (72% decrease).
 - Upper large intestine wall dose decreased from 14.4 mSv to 4.8 mSv.
 - Small intestine dose decreased from 7.8 mSv to 2.6 mSv.
Clinical Impact

• Of the 7015 NM procedures done at Gundersen Lutheran in 2010-2011 on patients 18+ years of age:
 • 163 were Tc-99m sulfur colloid egg yolk gastric emptying studies
 • 2.3% of all adult exams
 • 2.3% of all exams
Limitations

• Small number of clinical cases reviewed after changes
• Qualitative rather than quantitative review
• Inherent verification bias
• Phantoms for dose estimates not truly patient equivalent
• Adult patient radiation dose estimate based on a 70-kg patient; most patients vary from that
Conclusions

- Nearly all administered radiopharmaceutical doses were comparable to those recommended by national and international advisory bodies.

- Those that were not comparable were adjusted to match the recommendations with no noticeable decline in image quality or diagnostic capability.

- Site doses had not previously been comprehensively evaluated in this manner, so this was useful for quality and patient safety.
Recommended Additional Actions:

- Use embedded decision support in electronic ordering to reduce inappropriate imaging

- Optimize technique and use dose methods for CT portion

- Use new camera and software technology for dose reduction

- Use high-sensitivity 3D mode PET acquisition or high-sensitivity SPECT collimators to reduce activity required

- Scale administered activity by patient weight
Acknowledgements

- Thanks are extended to Jacqueline D. Moga, Ph.D., for assistance with evaluation of adult Nuclear Medicine dose and comparison with standards.
References

Questions?

M.E. Jafari, MS, DABR
Senior Diagnostic Physicist
Radiation Safety Officer
mejafari@gundluth.org

Alan M. Daus, MS, DABR
Senior Diagnostic Physicist
Laser Safety Officer
amdaus@gundluth.org