Measurement of a 60Co Teletherapy Spectrum Using a Compton Spectrometer

Introduction and Motivation

Most common beam parameter: absorbed dose to water
Most basic beam parameter: energy spectrum

Affects:
- Dosimeter response and correction factors
- Dose distribution
- Dose calculations
- Difficult to measure
- High-energy photons: penetrating
- High fluence rates: pulse pile-up and dead time
- Shielding

Goal

To measure the spectrum of a 60Co teletherapy unit using a Compton spectrometry setup

Compton Scattering Spectrometry

- Reduces fluence on detector
- Decreases energy
- Introduce scattering rod to beam
- Measure singly-scattered spectrum:
 \[\Phi_s(\Delta \nu') \]
- Apply corrections to get:
 \[\Phi_h(\Delta \nu) \]
Outline

- Introduction
- Background
- Methods and Materials
 - Spectrometry system
 - Spectra measurements
 - Measurement corrections
 - Monte Carlo
- Results
- Conclusions

Spectrometry System

- Theratronics T1000 60Co irradiator
- REGe detector (Canberra, Inc.)
 - Closed-ended coaxial
 - FWHM 1.9 keV at 1332 keV
- Collimation/shielding (Hopewell Designs)
 - 30-cm-long tungsten aperture
 (\varnothing 2 mm)
 - >10 cm lead
- Scatterer: Aluminum rod (\varnothing 6 mm)

Methods and Materials

- Compton scattering measurements
 - 10 x 10 cm2
 - $\varphi = 22.5^\circ$ ($d = 250$ cm)
 - $\varphi = 70.0^\circ$ ($d = 150$ cm)
- Primary beam measurements
 - 10 x 10 cm2
 - No scattering rod
 - $\varphi = 0^\circ$ ($d = 600$ cm)

Measurement Corrections: Energy and Efficiency Calibration

- Energy calibration (measured)
 - Multinuclide standard source (NIST-traceable for energy)
- Detector response correction (calculated)
 - Model detector and shielding in MCNP5
 - Characterize for monoenergetic photons
 - Includes efficiency and other artifacts
 - Use backwards stripping technique

Measurement Corrections: Compton Scattering Relations

- Energy-angle relationship: accounts for energy shift
- Klein-Nishina cross-section: corrects peak magnitudes
Introduction and Motivation
- Background
- Methods and Materials
- Results
 - Pre-reconstruction
 - Post-reconstruction
 - Spectra comparisons
- Conclusions

Methods and Materials
- Verified with measurements
 - 10 x 10 cm²
 - Profile (5 cm depth)
 - Percentage depth-dose
- Calculated spectrum

Results
- Includes background subtraction and corrections for detector effects
- Further corrected for Compton relations

Spectra Comparisons
Spectra Comparisons

- Measured teletherapy spectrum using Compton scattering technique
- Decreased resolution with increasing scattering angle
- Future work
 - 60Co measurements
 - Maximize count rate
 - Investigate lower-energy continuum
 - Improve correction methodology
 - Apply technique to linac spectra

Future Work

- Introduction and Motivation
- Background
- Methods and Materials
- Results
- Conclusions

Conclusions

- Dr. Larry DeWerd
- Jacqueline Moga
- Adam Paxton
- Ben Palmer
- John Micka
- UWMRRC students and staff
- UW RCL and ADCL customers

Acknowledgements

Measurement Corrections: Detector Efficiency

- Energy- and geometry-dependent
- Accounts for gamma interactions (CS, PP/TP, fluorescence)
 - Detector
 - Shielding
 - Collimation

THANK YOU