TomoTherapy for Cranial Radiosurgery: The Saint Mary’s Experience

Tewfik J. Bichay, Ph.D.
Director of Physics
The Lacks Cancer Center
Saint Mary’s Health Care
Grand Rapids, MI
The combined 3D imaging from CT, with the delivery of radiation from a binary collimator, from 360° of rotation.
Helical CT: TomoTherapy Process
General Requirements for Successful Cranial Radiosurgery

- **Good Immobilization**
 - Patient should not be able to move significantly.

- **Localization**
 - Must be able to place patient back into treatment position.

- **Excellent Dose Conformality**
 - To shape dose cloud around optic chiasm, brain stem, etc.

- **Q.A. Verifiable**
 - Is that dose distribution really deliverable?
Questions for an Early TomoTherapy Adopter

- Immobilization
 - Can a mask-based system be used without invasive fixation?

- Localization
 - Is image-guidance in TomoTherapy sensitive enough for cranial radiosurgery (single fraction and fractionated)?

- Conformality
 - How conformal is dose distribution?

- Q.A.
 - How good are the Q.A. tools?

- How important is daily imaging-IGRT?
If you can’t see what you are doing clearly, you may not get the desired outcome!
Carbon Fiber “S-Frame” Immobilizer
Typical Immobilization
Gold Fiducial Imaging

Axial “Fine”

Axial “Ultra Fine”
Imaging Collimator Size

Fine, Normal and Coarse

- 0.4 cm slit (0.6 cm)

Ultra Fine

- 0.1 cm slit (0.3 cm)
SAGITTAL LINE PAIR

PHANTOM TEST

COARSE
6 mm

NORMAL
4 mm

FINE
2 mm

ULTRA-FINE
1 mm

FINE AXIAL STANDARD
Protocols Available

Slice Spacing
- Fine (2 mm)
- Normal (4 mm)
- Coarse (6 mm)

Ultra Fine (1 mm)

Note: Current maximum is 80 slices per imaging session. Finest modality is chosen to allow coverage of region of interest.

6 MV used for all imaging
No flattening filter

<4 MV
Expect Something More

Standard Collimator
0.69 cm

Ultra fine Collimator
0.39 cm

Average Imaging Dose per Procedure

<table>
<thead>
<tr>
<th>Imaging Modality</th>
<th>Ultra fine</th>
<th>Fine</th>
<th>Normal</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.87</td>
<td>2.83</td>
<td>1.56</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Pitch
0.26 0.29 0.58 0.87
Summary of Cranial Cases

March 2005-March 2007

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th># Patients</th>
<th>Fractions</th>
<th>Dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBM</td>
<td>18</td>
<td>5-33</td>
<td>35.0-59.4</td>
</tr>
<tr>
<td>Metastases</td>
<td>14</td>
<td>1</td>
<td>14.0-18.0</td>
</tr>
<tr>
<td>Meningioma</td>
<td>14</td>
<td>30-33</td>
<td>52.7-59.4</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>6</td>
<td>30-33</td>
<td>54.0-59.4</td>
</tr>
<tr>
<td>Acoustic Neuroma</td>
<td>2</td>
<td>1-28</td>
<td>18.0-50.4</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>28-33</td>
<td>50.4-59.4</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coordinate System For Measurements

Linear one dimensional shifts do not represent total three-dimensional shift.
The Need for IGRT: Daily Shifts from initial Setup Position

Mean = 4.1 mm
n = 116

2.35 mm
Fusion Improvement with Rotational Shifts

- **Right Marker**
- **Center Marker**
- **Left Marker**

Legend:
- No IGRT
- Linear Only
- Linear + Rotational
Auto Fusion Accuracy

<table>
<thead>
<tr>
<th>Patient</th>
<th>Fusion</th>
<th>RT</th>
<th>Center</th>
<th>LT</th>
<th>Gold Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear+Rot</td>
<td>0.71</td>
<td>0.79</td>
<td>0.13</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>2</td>
<td>Linear+Rot</td>
<td>1.73</td>
<td>2.06</td>
<td>1.95</td>
<td>1.1 mm</td>
</tr>
<tr>
<td>3</td>
<td>Linear+Rot</td>
<td>0.55</td>
<td>0.52</td>
<td>0.67</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>4</td>
<td>Linear+Rot</td>
<td>1.75</td>
<td>3.08</td>
<td>1.78</td>
<td>1.4 mm</td>
</tr>
<tr>
<td>5</td>
<td>Linear+Rot</td>
<td>0.07</td>
<td>0.99</td>
<td>0.13</td>
<td>0.2 mm</td>
</tr>
</tbody>
</table>

(n=116)
Typical Protocol for SRS/SRT

- 2 days 512x512 MRI, 2 mm slices T1/T2
- -1 days 3D reconstruction of MRI, head pitch determined
- Day 0 immobilization using double layer aquaplast mask and 2 mm slices KV-CT with IV contrast
- +1 day fusion (MRI + CT) and contouring
- +2 days plan generated/approved
- +3 days QA completed
- +4 days imaging only day. A minimum of two datasets collected (fine/ultra fine mode). This confirms patient’s stability over a short period of time.
- +5 days, imaging and treatment
“Single Fraction” Radiosurgery

- **Typical** table minimum velocity is 0.05 mm/sec
 - Theoretical minimum is 0.012 mm/sec

- Minimum gantry rotation is ~1 rpm
 - Typical Dose max is ~10 Gy per pass

- Dose greater than 10 Gy requires multiple passes
 - 18 Gy single fraction = 9 Gy/ff x 2 ff
Single Fraction Radiosurgery: Treatment Time

- Typical 18.0 Gy fraction for a 2 cm lesion, using 1 cm collimator
 - Imaging time is 5 min (fine mode)
 - Treatment time (9 Gy) is 20 min
 - 20 min x 2 passes = 40 min treatment time
 - Add a second imaging session of 5 min
 - Add overhead of 10 min
- Total time is 10+40+10 = 60 min
“Single Fraction” Radiosurgery: Is There a Radiobiological Concern?

• Two “mini” fractions delivered over a 1-hour period.

• This is comparable to typical radiosurgery where a single fraction may take 1 hour or more to deliver.
Sample Case: One Sensitive Structure
Sample Case: One Sensitive Structure
Sample Case: Two Sensitive Structures
Metastasis - Melanoma
Acoustic Neuroma
Glioblastoma Multiforme
Trigeminal Neuralgia
Summary

• Immobilization
 - Typical setup error with mask-based system without bone registration is a vector of ~4.1 mm.

• Localization
 - TomoTherapy IGRT/fusion process reduces uncertainty to ~1.15 mm (0.1-3.1mm).
 - When position is critical, additional gain can be achieved by implanted objective markers.
 - Daily imaging necessary.

• Conformality
 - Conformality acceptable even for small lesions adjacent to sensitive structures.

• Q.A.
 - Q.A. tools adequate for delivery evaluation.
If We Stand Still, We Fall Behind