IMRT QA Comparison Using MapCheck and Portal Dosimetry

> Research Performed by: Eric Lucas Supervised by: John Fan, PhD., DABR

Research Performed at Edward Cancer Center

Purpose

 Research conducted to compare IMRT QA process of Sun Nuclear's MapCheck and Varian's Portal Dosimetry
 Compare absolute dose measurements of

both systems to ion chamber results

- Compare dose/fluence map measurements of both systems
- Provide general advantages for each system (compared to the other)

Patient Selection

Simple • 5 Field Brain (GBM)

7 Field Prostate Boost

I1 Field Paraaortic Lymph Nodes

Complex
18 Field Head and Neck (9 Field Split)

Data Collection Methods and Procedures

MapCheck Process

 Create verification plan for each field
 Export calculated dose map (Frontal) to MapCheck for each field
 Calibrated diode array prior to collecting data

MapCheck Process Cont.

Use 5 cm solid water block + 2 cm equivalent buildup included in MapCheck array (total of 7 cm buildup)
SDD = 100 cm
Chose normalization point in plateau region (ion chamber measurement will be performed at the same point)

Ion Chamber Process

Used Standard Imaging Exradin A1 Mini Chamber w/ 0.056 cc collecting volume Solid water buildup = 7 cm • SDD = 100 cm • 5 cm solid water placed under ion chamber to provide back scatter Calibrated ion chamber readings with open field (10x10) prior to collecting data

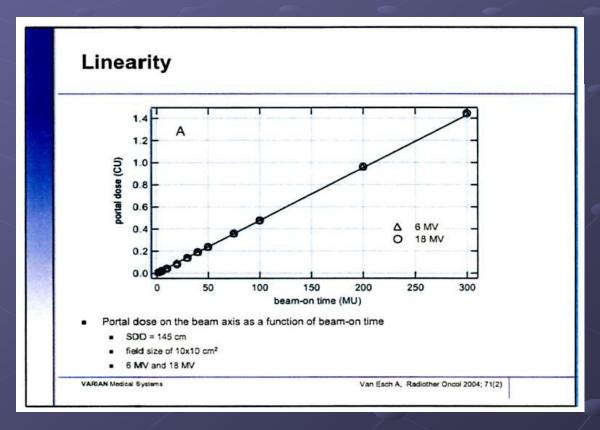
Portal Dosimetry Process

Created verification plan for each patient (all fields included in one plan per patient)
Inherent buildup in panel = 1.2 cm (Aluminum and Foam)
No additional build up used
Calibrated panel prior to collecting data

Portal Dosimetry Process Cont.

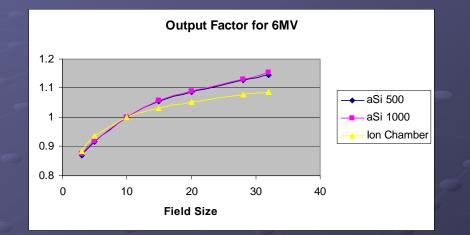
• SDD = 100 cm

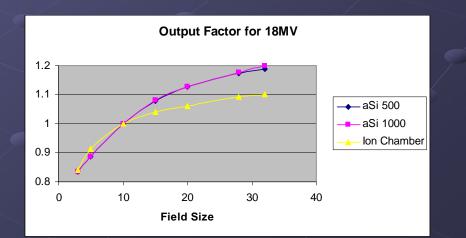
 Used same normalization point from MapCheck analysis for consistency
 Data measured in units of CU

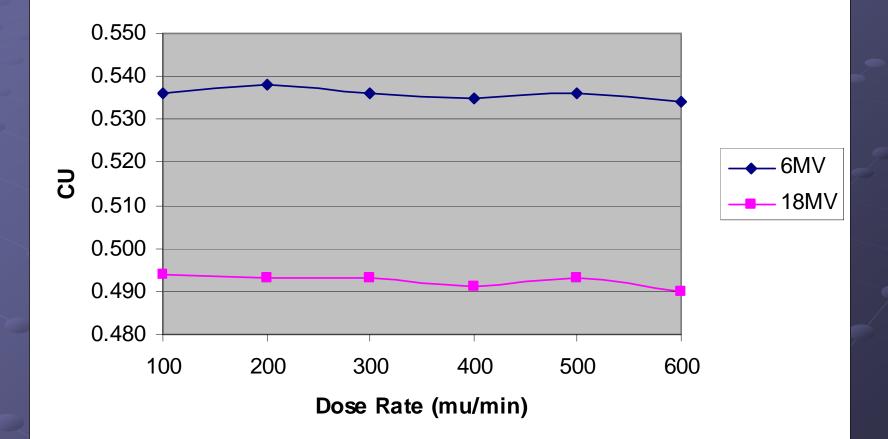

Definition of Calibrated Unit (CU)

Field Size =10 x 10 cm²
SDD = 100 cm
Deliver 100 MU to panel
Set reading = 1 CU

I CU is numerically approximate to 1 Gy


Dosimetric Characteristics of Portal Imager


CU has linear relationship with delivered monitor units for both energies


Field Size Dependence

- Portal imager has different field size dependence than ion chamber
- Need to measure output factors during commissioning process
- Field Size dependence is same for both panel types

Portal Imager Dose Rate Dependence (aSi 1000)

(Dose Rate Independent within +/- 0.5%)

Absolute Dose Measurement Results

ABSOLUTE DOSE vs ION CHAMBER

		MapCheo	:k	Portal Dosimetry		
		Average Dose	σ	Average Dose	σ	
Simple	5 Field Brain	0.36%	0.6%	1.27%	1.0%	
	7 Field Prostate Boost	0.48%	0.2%	-0.31%	0.6%	
	11 Field Paraaortic	-0.16%	1.6%	0.00%	0.9%	
↓ Complex	18 Field Split H&N	0.43%	4.9%	-0.49%	5.5%	

MapCheck & Portal Dosimetry are consistent w/ ion chamber results
 Standard Deviation increases (Less Consistent) with plan complexity
 Average measured dose is independent of plan complexity

ABSOLUTE DOSE vs PLANNED DOSE

		Bortal						
			MapCheck		Portal Dosimetry		Ion Chamber	
0			Average Dose	σ	Average Dose	σ	Average Dose	σ
Sim	nple	5 Field Brain	0.14%	0.8%	1.02%	0.5%	-0.22%	1.1%
	XX	7 Field Prostate Boost	2.27%	0.8%	1.51%	0.8%	1.79%	0.8%
		11 Field Paraaortic	2.06%	2.4%	2.21%	1.8%	2.21%	1.6%
	, plex	18 Field Split H&N	0.85%	1.9%	0.13%	2.2%	0.47% (4.7%

Both are adequate for measuring absolute dose in IMRT QA
Ion chamber volume averaging

		GAMMA COMPARISON (3% & 3mm)					
			MapCheck		Portal Dosimetry		
Sir	nple		Gamma	σ	Gamma	σ	
		5 Field Brain	100.0%	0.0%	96.9%	1.1%	
	X	7 Field Prostate Boost	100.0%	0.0%	98.2%	1.3%	
	XX	11 Field Paraaortic	95.4%	5.2%	98.6%	1.3%	
	, nplex	18 Field Split H&N	92.7%	4.7%	97.6%	1.7%	

Portal Dosimetry Gamma Pass % is independent of plan complexity
MapCheck Gamma Pass % decreases w/ plan complexity

		GAMMA COMPARISON (3% & 3mm)					
			MapChee	ck	Portal Dosimetry		
Siṃpl	le		Gamma	σ	Gamma	σ	
		5 Field Brain	100.0%	0.0%	96.9%	1.1%	
	7 Field Prostate Boost	100.0%	0.0%	98.2%	1.3%		
	0 X	11 Field Paraaortic	95.4%	5.2%	98.6%	1.3%	
	lex	18 Field Split H&N	92.7%	4.7%	97.6%	1.7%	

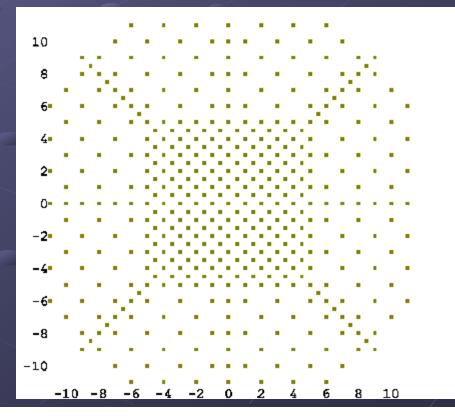
Portal Dosimetry Standard Deviation/inconsistency independent of plan complexity
MapCheck Standard Deviation/inconsistency increases w/ plan complexity

Possible Reasons for MapCheck's Gamma Inconsistency Few sampling points within field especially for small fields. Non-uniform distribution of detectors (spacing varies from 7mm to 14mm) makes central area more "important" than outer area in gamma passing percentage. Distance to agreement criteria (3mm) is smaller than detector spacing. MapCheck has to interpolate measured data between diodes.

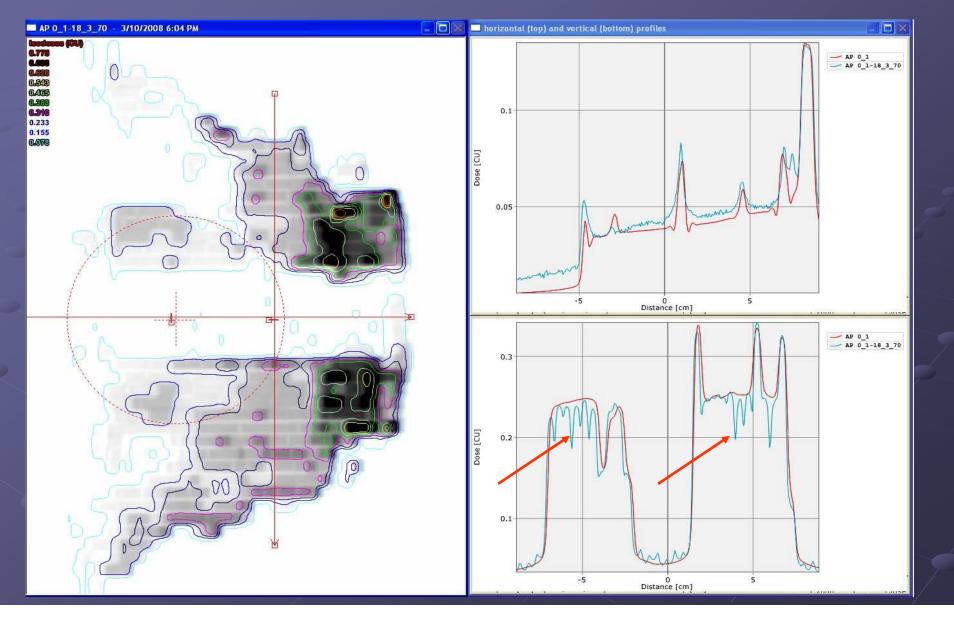
MapCheck vs Portal Dosimetry

Resolution Comparison

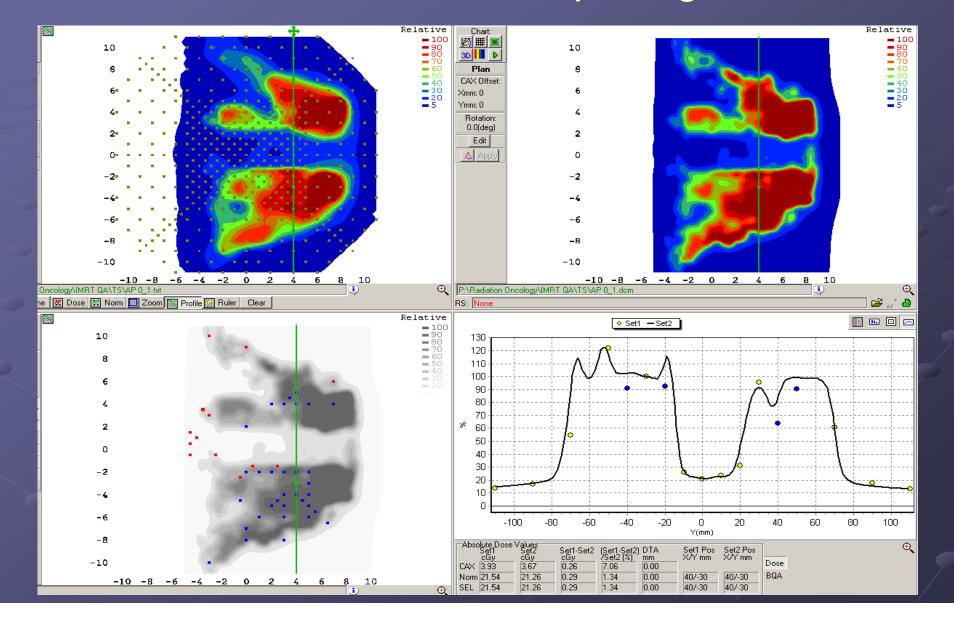
Portal imaging panel capable of <u>0.39 mm</u> resolution


MapCheck capable of only <u>7 – 14 mm</u> resolution

Portal Vision hardware


Three aSi detector types

Name/ Type	Acq. Unit	Matrix	Resolution	
aSi 500	IAS2	512 x 384	0.78mm	
aSi 500-II	IAS3	512 x 384	0.78mm	
aSi 1000	IAS3	1024 x 768	0.39mm	



Higher Resolution Portal Image showing Tongue and Groove Effect

MapCheck does not show details as well due to detector spacing

MapCheck Advantages

User friendly software for data analysis Easier commissioning process True 3rd party verification system in Sun Nuclear Generates comprehensive report Portal Dosimetry Advantages Higher resolution and consistent Gamma analysis Easier verification plan creation No extra data to export Easier setup – no additional equip & software Results integrated into patient database

Major Disadvantages of MapCheck

Large detector spacing
 Non-uniform detector distribution

Major Disadvantages of Portal Dosimetry

 Does not test patient dose calculation algorithms (convolution, superposition, etc). Portal dosimetry prediction is calculated from fluence map, not dose map.

 Must not use portal dosimetry for IMRT commissioning. Beam modeling must be tested by some other methods.

Summary

Both systems are capable of performing accurate IMRT QA
Portal Dosimetry has advantage in resolution and system integration
MapCheck has advantage in ease of commissioning and user friendliness of software

Choice lies with user and what they are comfortable with

Acknowledgements

Dr. John Fan (Senior Physicist - Edward) Cancer Center) Gary Huang (Physicist - Edward Cancer) Center) Rob Foster (Dosimetrist - Edward Cancer) Center) Dr. Alex Markovic (MRP Program Director) Rosalind Franklin University)