Optimization of High Dose Rate Brachytherapy Treatment Plans
RUIDO versus IPSA

Yixiang Liao, Ph.D.
Michael Kirk, Ph.D.
Damian Bernard, Ph.D.
Julius Turian, Ph.D.
James Chu, Ph.D.

Rush University Medical Center
1645 Congress Pkwy
Chicago, IL 60612
Outline

- Introduction
- Optimization process
- Conclusion
- Future work
Introduction

- What is optimized in HDR brachytherapy?
 - For stepping HDR source: dwell positions fixed
 - Optimized dose distribution: varying dwell time

- RUIDO (Rush University In-house Dose Optimizer):
 - Capable of optimizing:
 - Physical Dose
 - gEUD (generalized Equivalent Uniform Dose)
 - TCP and NTCP (Tumor Control and Normal Tissue Complication)

- IPSA (Inverse Planning Simulated Annealing):
 - Commercially available from Nucletron Plato system
 - Only capable of physical dose optimization
Optimizer

- IPSA: Simulated Annealing
- RUIDO: Adaptive Simulated Annealing
- Searching for global minimum for cost function:
 - New cost $C(p_{k+1})$ is accepted when:
 $$\exp\left[\frac{-(C(p_{k+1}) - C(p_k))}{T_{cost}}\right] > U$$
 - $U \subseteq [0, 1)$, uniform random generator
Optimization Process

Dose Grid Set Up

Optimization (ASA)

Cost Functions

Final Results

4/20/2008 Yixiang Liao, Ph.D.
Dose Grid Set Up (contour based)

Bladder

Rectum

PTV

Dwell Position

X

Y

4/20/2008

Yixiang Liao, Ph.D.
Dose Grid Set Up (contour based)
Dose Grid Set Up (contour based)

Bladder

PTV

Dwell Position

Rectum

4/20/2008 Yixiang Liao, Ph.D.
Cut-off Distance

● Cut-off distance:
 – Nature of brachytherapy:
 ● Dose falls off quickly away from source
 ● High dose region too close to source does not represent the total target dose distribution very well
 – Dose points within the cut-off distance from the dwell positions are removed
 – Default 2mm, why?
Why 2mm?

- Normalized to dose rate at 0.1mm.

4/20/2008 Yixiang Liao, Ph.D.
Dose Rate Calculation

- **Equation:**

\[
Dose\ Rate = \Gamma \cdot A \cdot f\ - factor \cdot filter \cdot Poly(r) \cdot geo_factor(r)
\]

- \(Poly(r) = a_0 + a_1 r + a_2 r^2 + a_3 r^3 \)
- \(Geo_factor = 1/r^2 \)

- Dose at each dose point is the sum of the production of dose rate and dwell time from all source positions
Optimization Process

Dose Grid Set Up

Optimization (ASA)

Cost Functions

Final Results
RUIDO – Cost Functions

- Physical Dose

\[\text{Cost Surface} = (D_{\text{surf}} - D_0)^2 \]

\[\text{Cost Volume} = \begin{cases}
2(D_{\text{vol}} - D_0)^2, & D_{\text{vol}} < D_0 \\
0, & D_0 < D_{\text{vol}} < 2D_0 \\
(D_{\text{vol}} - 2D_0)^2, & D_{\text{vol}} > 2D_0
\end{cases} \]
IPSA – Cost Function
IPSA – Cost function (prostate)
IPSA – Prostate Example

<table>
<thead>
<tr>
<th>VOI</th>
<th>Margin (mm) Dose control</th>
<th>Margin (mm) Catheter activation</th>
<th>Organ type</th>
<th>Min surface dose weight</th>
<th>Min surface dose (cGy)</th>
<th>Max surface dose (cGy)</th>
<th>Max surface dose weight</th>
<th>Min volume dose weight</th>
<th>Max volume dose (cGy)</th>
<th>Max volume dose weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bladder</td>
<td>0.0</td>
<td>0.0</td>
<td>Organ at risk</td>
<td>0</td>
<td>0</td>
<td>475.0</td>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>475.0</td>
</tr>
<tr>
<td>bulb</td>
<td>0.0</td>
<td>0.0</td>
<td>Organ at risk</td>
<td>0</td>
<td>0.0</td>
<td>475.0</td>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>475.0</td>
</tr>
<tr>
<td>dil</td>
<td>0.0</td>
<td>0.0</td>
<td>Target</td>
<td>100</td>
<td>1425.0</td>
<td>1425.0</td>
<td>100</td>
<td>100</td>
<td>1425.0</td>
<td>1425.0</td>
</tr>
<tr>
<td>prostate</td>
<td>0.0</td>
<td>20.0</td>
<td>Reference target</td>
<td>100</td>
<td>950.0</td>
<td>1425.0</td>
<td>30</td>
<td>100</td>
<td>950.0</td>
<td>1425.0</td>
</tr>
<tr>
<td>rectum</td>
<td>0.0</td>
<td>0.0</td>
<td>Organ at risk</td>
<td>0</td>
<td>0.0</td>
<td>475.0</td>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>475.0</td>
</tr>
<tr>
<td>urethra</td>
<td>0.0</td>
<td>0.0</td>
<td>Organ at risk</td>
<td>100</td>
<td>950.0</td>
<td>1140.0</td>
<td>30</td>
<td>100</td>
<td>950.0</td>
<td>1140.0</td>
</tr>
</tbody>
</table>

Class Solution

In use: ucsf-prostate

4/20/2008

Yixiang Liao, Ph.D.
Optimization Process

1. Dose Grid Set Up
2. Optimization (ASA)
3. Cost Functions
4. Final Results
Results

IPSA

RUIDO

4/20/2008

Yixiang Liao, Ph.D.
Case Study

- Three Syed implant HDR cases
- RUIDO computing time correlates with # of total dose points

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Volume (cc)</td>
<td>32.6</td>
<td>94.7</td>
<td>92.1</td>
</tr>
<tr>
<td># of total dose points</td>
<td>316</td>
<td>2500</td>
<td>698</td>
</tr>
<tr>
<td>Computing time (min)</td>
<td>1</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

- IPSA: computing time ~10 seconds for each trial
RUIDO vs. IPSA

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUIDO</td>
<td>0.95</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>IPSA</td>
<td>0.95</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>Diff %</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>CI</td>
<td>0.54</td>
<td>0.65</td>
<td>0.73</td>
</tr>
<tr>
<td>HI</td>
<td>0.50</td>
<td>0.58</td>
<td>0.63</td>
</tr>
<tr>
<td>OI</td>
<td>0.12</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>-16%</td>
<td>12%</td>
<td>-45%</td>
</tr>
</tbody>
</table>

- RUIDO normalized to have the SAME CI as IPSA
- Coverage Index (CI) = \(\frac{V_{100}}{V_{Total}} \)
- Homogeneity Index (HI) = \(\frac{(V_{100} - V_{150})}{V_{Total}} \)
- Overdose Index (OI) = \(\frac{V_{200}}{V_{Total}} \)

4/20/2008
Yixiang Liao, Ph.D.
Conclusion

- RUIDO and IPSA generate equivalent plans
- RUIDO outperforms IPSA when the number of dose points are not high
- RUIDO is less user dependent than IPSA
- No OARs included in RUIDO (physical dose) might be a limitation of RUIDO
Future Work

- Reducing dose points might improve the performance of RUIDO
- Incorporating OARs into physical dose optimization
- Apply RUIDO to LDR brachytherapy
 - Optimizing on source positions
Computing Time vs. Dose Points

Ratio of Pts
Ratio of Time