Overview, Basis & Revision of NCRP Report 151 Structural Shielding Design and Evaluation for Megavoltage x- and Gamma-ray Radiotherapy Facilities

Hoang T. Vu, MS, PhD Candidate Department of Medical Radiation Physics College of Health Professions Rosalind Franklin University of Medicine and Sciences North Chicago, IL 60064

<u>Outline</u>

- 1. Revision of NCRP 151
- 2. What's old? B_{pri}, B_L, B_{ps} W= workload U= use factor T= occupancy factor
- 3. What's new? C_l = IMRT factor IDR= instantaneous dose rate TADR= time average equivalent dose rate R_w = Weekly TADR R_h = Hourly TADR

- 4. Examples of how the shielding is done
 - Primary barrier
 - B. Secondary barrier (Leakage and scatter)
 - C. Gamma and neutron capture
 - D. Laminated (Pb & PBE)
 - E. Leakage and scatter at maze door

Address new issues since NCRP #49

STRUCTURAL SHIELDING DESIGN AND EVALUATION FOR MEDICAL USE OF X RAYS AND GAMMA RAYS OF ENERGIES UP TO 10 MeV

Safety Reports Sories No.47

Radiation Protection in the Design of Radiotherapy Facilities

() IAEA

- New types of equipment (Trilogy, Elekta, Tomotherapy, Cyberknife etc)
- Many new uses for radiotherapy equipment
- Energy >10 MV, Dual energy machines
- Room designs without mazes
- Varied shielding composites
- Instantaneous Dose Rate (IDR) interpretation problems
- Address the structural shielding design and evaluation for medical use of megavoltage x and gamma rays for radiotherapy
- Supersedes NCRP Report No. 49- up to 10 MeV (Dough Simpkin, 1976)
- Shielding for Brachytherapy and simulators are not included (<u>Dr. Glen's talk</u>, <u>available at</u>)

http://www.aapm.org/meetings/07SS/documents/Glasgow1and2.pdf)

IAEA Safety Report Series No. 47 available at <u>http://www-pub.iaea.org/MTCD/publications/pdf/pub1223_web.pdf</u>

NCRP Report No. 151

TABLE 2. SUMMARY OF RECOMMENDED/LEGAL EFFECTIVE DOSE LIMITS AND DESIGN EFFECTIVE DOSE LIMITS

Dose limit	IAEA [1]	USA	United Kingdom
Occupational exposure dose limit	20 mSv per year averaged over 5 consecutive years and 50 mSv in any single year	Implied annual limit of 10 mSv, cumulative dose of age × 10 mSv, and 50 mSv in any single year [9]	20 mSv in a year or 100 mSv in 5 consecutive years and 50 mSv in any single year [7]
Design limit for occupational exposure		Fraction of 10 mSv annually [9]	6 mSv in a year [7] IDR is 7.5 μSv·h ⁻¹ [6]
Public dose limit	1 mSvin a year	Infrequently, 5 mSv annually, and continually, 1 mSv annually [9]	1 mSv in a year [7]
Design limit for public area		1 mSv annually [10] 20 μSv in any hour [8]	0.3 mSv in a year [7] IDR is <7.5 μSv-h ⁻¹ [6]
Continuous expo	sure		TADR is <0.5 μSv·h ⁻¹ [6] TADR2000 <0.15 μSv·h ⁻¹

Permissible Dose/Design Goal (P)

Controlled Areas:

Shielding design goal (*P*) (in dose equivalent): 0.1 mSv week⁻¹ (5 mSv/yr)

Uncontrolled Areas:

Shielding design goal (*P*) (in dose equivalent): 0.02 mSv week⁻¹ (1 mSv/yr)

Linac Primary Barrier

$$B_{\rm L} = \frac{P d_{\rm L}^2}{10^{-3} W T}$$

$$B_{\rm ps} = \frac{P}{aWT} d_{\rm sen}^2 d_{\rm sec}^2 \frac{400}{F}$$

- d_{sex} = distance from the x-ray target to the patient or scattering surface (meters)
- d_{eec} = distance from the scattering object to the point protected (meters)
- a = scatter fraction or fraction of the primary-beam absorbed dose that scatters from the patient at a particular angle (see Table B.4 in Appendix B)
- F = field area at mid-depth of the patient at 1 m (cm²)
- U = use factor or fraction of the workload that the primary beam is directed at the barrier in question.
- T = occupancy factor for the protected location or fraction of the workweek that a person is present beyond the barrier. This location is usually assumed to be 0.3 m beyond the barrier in question (see Table B.1 in Appendix B for recommended occupancy values)

- P = shielding design goal (expressed as dose equivalent) beyond the barrier and is usually given for a weekly time frame (Sv week⁻¹)
- d_{pti} = distance from the x-ray target to the point protected (neters)
- W = workload or photon absorbed dose delivered at 1 m from the x-ray target per week (Gy week⁻¹)⁶

Equivalent Dose (H_{pri})

TVLs

The required number (n) of TVLs is given by:
 n= -log(B_{pri})
 And the barrier thickness (t_{barrier}) is given by:

 $t_{\text{barrier}} = TVL_1 + (n-1) TVL_e$

NCRP Report No. 151

workload (W): The average absorbed dose of radiation produced by a source over a specified time (most often one week) at a specific location.

Gv wk⁻¹

	Low energy	<u>High</u> energy	
< 10 MV	1000		NCRP #49
		500	NCRP # 51
> 10 MV	< 350	< 250	Kleck and Elsalim (1994)
6 MV	450	400 *	Meckalakos et al (2004) ^a dual energy machine

$$\begin{split} WU]_{\text{pri}} &= WU]_{\text{wall scat}} \\ &= (W_{\text{conv}} U_{\text{conv}} + W_{\text{TBI}} U_{\text{TBI}} + W_{\text{IMRT}} U_{\text{IMRT}} + W_{\text{QA}} U_{\text{QA}} + \dots) \\ W_{\text{L}} &= W_{\text{conv}} + W_{\text{TBI}} + C_{\text{I}} W_{\text{IMRT}} + C_{\text{QA}} W_{\text{QA}} + \dots \end{split}$$

NCRP Report No. 151

U factor

T factor

TABLE 3.1—High-energy (dual x-ray mode) use-factor distribution at 90 and 45 degree gantry angle intervals."

Angle Interval Center	$U(\mathfrak{V}_{\mathbf{r}})$
90 degree interval	
0 degree (down)	31.0
90 and 270 degrees	21.3 (each)
180 degrees (up)	26.3
45 degree interval	
0 degree (down)	25.6
45 and 315 degrees	5.8 (each)
90 and 270 degrees	15.9 (each)
135 and 225 degrees	4.0 (each)
180 degrees (up)	23

*Rodgers, J.E. (2001). Personal communication (Georgetown University, Washington). Unpublished reanalysis of the survey data in Kleck and Elsalim (1994). TABLE B.1—Suggested occupancy factors^a (for use as a guide in planning shielding when other sources of occupancy data are not available).

Location	Occupancy Factor (T)
Full occupancy areas (areas occupied full-time by an individual), e.g., administrative or clerical offices; treatment planning areas, treatment control rooms, nurse stations, receptionist areas, attended waiting rooms, occupied space in nearby building	1
Adjacent treatment room, patient examination room adjacent to shielded vault	1/2
Corridors, employee lounges, staff rest rooms	1/5
Treatment vault doors ^b	1/8
Public toilets, unattended vending rooms, storage areas, outdoor areas with seating, unattended waiting rooms, patient holding areas, attics, janitors' closets	1/20
Outdoor areas with only transient pedestrian or vehicular traffic, unattended parking lots, vehicular drop off areas (unattended), stairways, unattended elevators	1/40

The IMRT factor (C_I)

- Address IMRT cases as well as SRS and SRT
- The ratio of MU per unit prescribed absorbed dose (D_{pre}) needed for IMRT (MU_{IMRT}) and MU per unit absorbed dose for conventional treatment (MU_{conv})
- No change in W_{pri}, higher by a factor in W_{leakage}
- $C_I: 2 10$ (Followill et al.)
- $C_{\rm I}$ (CyberKnife) = 15, W= 12.5 Gy/case
- C_I (Tomotherapy) is significantly large, 1TVL and 2 TVLs thicker for primary and secondary barrier for leakage

 $MU_{\rm IMRT} = \sum_{i} \frac{MU_{i}}{(D_{\rm pre})}$

$$T_1 = \frac{MU_{\rm IMRT}}{MU_{\rm conv}}$$

Instantaneous Dose Rate (IDR)

- Measured value depending on the absorbed-dose output rate of machine
- Specified at 30 cm beyond the barrier
- Designed for Co⁶⁰ and pulsed beam
- For Linac, it is averaged over 20-60 s depending on the instrument activation <u>response</u> <u>time</u> and the <u>pulse cycle</u> of the accelerator
- Used to calculate R_h

IDR = DR_m60B_e/d² in Sv/hr

- DR_m= maximum dose rate output @1m (Gy/hr)
- B_e = expected transmission factor
- d= distance from the x ray target
 to the point protected (m)

Time Averaged Dose-Equivalent Rates (TADR)

- The use of IDR does not properly represent the true operating conditions and radiation environment of the facility.
- It is more useful if the W and U are considered together with the *IDR* when evaluating the adequacy of a barrier.
- Therefore, TADR is used along with the measured or calculated IDR.
- The TADR is the barrier attenuated dose-equivalent rate averaged over a specified time or period of operation.
- TADR is α to *IDR*, and depends on *W* and *U*.
- Hourly TADR (R_h) and weekly TADR (R_w)

$R_w \& R_h$

If R_w x T is < P, the barrier is adequate
 NRC specifies that the dose equivalent in any unrestricted area from external sources < 0.02 mSv (20 µSv) in-any-one-hour (NRC, 2005a).

$$R_{\rm h} = N_{\rm max} H_{\rm p}$$

- R_h derives from the maximum number of patient treatments that could possibly be performed in-any-one-hour when the time for setup of the procedure is taken into account.
- N_{max} = maximum number of patient treatments in-any one-hour
- H_{pt} = average dose equivalent per patient treatment at 30 cm beyond the penetrated barrier

 N_{max} is the maximum number of patient treatments in any hour

 $\overline{N}_{\rm h}$ is the average number of patient treatments in an hour

Linac Primary Barrier

	Linac Primary	Barrier								
18MV	W Green cells are for input values provided by the Qualified Expert									
	Yellow cells are not to be changed by the user of the software									
Linac,	Primary barrier									
	Input values	unit								
Р	Design Dose Limit	$mSv wk^{-1}$	0.1							
d	Distance from POI to source origin	m	7.2							
W	Workload (defined @ 100 cm from source	$Gy wk^{-1} or Sv wk^{-1}$	600							
U	Use factor		0.25							
Т	Occupancy factor		0.2							
TVL	Tenth value layer for shielding material	mm	445	TVLs.x	S					
	Primary barrier calculation	equation								
В	Transmission factor	Pd ² /WUT	1.73E-04							
n	Number of TVL required	Log ₁₀ (1/B)	3.76							
t	Thickness of shielding material required	nTVL	1674	mm						

Linac Primary Barrier

	TADR considerations				
	(Time Average Dose Equivalent Rate)				
	Input values	unit			
DR_{m}	Maximum dose output rate @ 1 m	Gy min ⁻¹		12	
t _e	Thickness of shielding material employed	mm		1760	
W _{ha}	Maximum workload based on actual time/procedure	Gy h ⁻¹		36	
W _{hb}	(IAEA) W above expressed in Gy h ⁻¹	Gy h ⁻¹		600	
W _h	Smaller of W_{ha} and W_{hb}			36	Gy
		equation			
Be	Transmission factor - expected	1/(10′(t _o /TVL))	0.0	001109	
IDR	Instantaneous Dose Rate	$DR_m 60B_{\theta}/d^2$	1	.54E-03	Sv h ⁻¹
DR_{m}	Maximum dose output rate @1 m	unit conversion		720	Gy h ⁻¹
R _h	Maximum dose in-any-hour	$\mathrm{IDR} \mathrm{W}_{\mathrm{h}} \mathrm{U}/\mathrm{DR}_{\mathrm{m}}$		19.25	μSv

Hoang T. Vu, Fall AAPM Midwest Chapter Meeting, November 3rd, 2007 < 20 µSv TADR limit 17

	TABLE 5.3 (or B.2 in #151)	TENTH VA APPROXIN	ENTH VALUE LAYER (TVL) FOR COBALT-60 AND X RAY ENERGIES. THESE ARE PPROXIMATE VALUES BASED ON LARGE ATTENUATION.						
		Co-60a	4 MVb	6 MVb	10 MVb	15 MVb	18 MVb	20 MVb	24 MVb
	TVL for concrete Primary beam	(density 23	50 kg _i ¤m-3) in mm					
	gamma/ X rays	218	290) 343	389	432	445	457	470
TABLE B.7	Leakage gamma and X rays (90)	218	254	279	305	330	330	343	356
	TVL for steel (der Primary beam	nsity 7800 k	g _i ¤m-3) in	mm					
	gamma/ X rays	71	91	98	105	108	111	111	107
	Secondary beam gamma/ X rays	69	79	80	85	87	87	88	89
	TVL for lead (den Primary beam	sity 11360 I	(gi¤m-3)in	mm					
	gamma/ X rays	41	53	3 55	56	57	56	55	52
	Secondary beam gamma/ X rays	40	47	' 45	46	47	47	49	51

aCobalt-60 data from NCRP49 [1].

bAdapted from Varian Associates. The TVL of leakage X rays are based on calculations by Nelson and LaRiviere [22].

Linac	, Secondary barrier			
	Input values for leakage barrier	unit		
Р	Design Dose Limit	mSv wk ⁻¹	0.02	
d₅	Distance from POI to isocenter	m	7.2	
W	Workload (defined @ 100 cm from source of unit)	Gy Wk^{-1} or Sv Wk^{-1}	600	
U	Use factor		1	
Т	Occupancy factor		0.0625	
ΤЩ	Tenth value layer for shielding material	mm	330 <u>TVL</u>	<u>s.xls</u>
	Leakage barrier calculation	equation		
В	Transmission factor	1000 P d ² / W T	2.76E-02	
n	Number of TVL required	Log ₁₀ (1/B)	<mark>1.56</mark>	
t	Thickness of shielding material required	n TVL	514 mm	
	Input values for patient scatter barrier	unit		
Р	Design Dose Limit	mSv wk ⁻¹	0.02	
d_{sca}	Distance from source to isocenter	m	1	
d _{sec}	Distance from POI to isocenter	m	7.2	
а	Scatter fraction per 400 cm ²		2.53E-03 aSc	Fraction
W	Workload (defined @ 100 cm from source of unit)	Gy wk ⁻¹ or Sv wk ⁻¹	600	
U	Use factor		1	
Т	Occupancy factor		0.0625	
F	Maximum field size at isocenter	cm²	1600	
TVLp	Tenth value layer for shielding material	rm	288 TVL	scatter.>

Meeting, November 3rd, 2007

Table 5.5 Scatter fractions of dose, a, at 1 metre for a 400 cm ² incident beam										
(Table B.	4 of #151)									
Angle	Co-60 ^a	6N	∕IV ^b	10 N	MV ^b	18 N	√IV ^b	24 1	MV ^b	
(degree)										
		maxa	a at 1.5 cm	maxa	a at 2.5 cm	maxa	a at 2.5 cm	maxa	a at 2.5 cm	
1(0 1.1 × 10 ⁻²	1.68×10 ⁻²	1.04×10 ⁻²	1.69×10 ⁻²	1.66×10 ⁻²	2.43 ×	1.42×10 ⁻²	2.74×10^{-2}	1.78×10 ⁻²	
2	$0 8.0 \times 10^{-2}$	1.15×10^{-2}	6.73×10^{-3}	1.03×10^{-2}	5.79×10^{-3}	10^{2} 1.17×10^{-2}	5.39×10 ⁻³	1.27×10^{-2}	6.32×10^{-3}	
3	0.0×10^{-3}	5.36×10^{-3}	2.77×10^{-3}	6.73×10^{-3}	3.18×10^{-3}	7.13×10^{-3}	2.53×10^{-3}	7.21×10^{-3}	2.74×10^{-3}	
4	53.7×10^{-3}	2.97×10^{-3}	1.39×10 ⁻³	3.25×10^{-3}	1.35×10^{-3}	3.05×10^{-3}	8.64×10^{-4}	3.06×10^{-3}	8.30×10 ⁻⁴	
6	2.2×10^{-3}	1.74×10^{-3}	8.24×10^{-4}	1.84×10^{-3}	7.46×10^{-4}	1.42×10^{-3}	4.24×10^{-4}	1.37×10^{-3}	3.86×10^{-4}	
9	9.1×10^{-4}	7.27×10^{-4}	4.26×10^{-4}	7.14×10^{-4}	3.81×10^{-4}	3.75×10^{-4}	1.89×10^{-4}	3.53×10^{-4}	1.74×10^{-4}	
13:	55.4×10^{-4}	4.88×10^{-4}	3.00×10^{-4}	3.70×10^{-4}	3.02×10^{-4}	2.59×10^{-4}	1.24×10^{-4}	2.33×10^{-4}	1.20×10^{-4}	
150	1.5×10^{-4}	3.28×10^{-4}	2.87×10^{-4}	3.16×10^{-4}	2.74×10^{-4}	2.26×10^{-4}	1.20×10^{-4}	2.12×10^{-4}	1.13×10^{-4}	

Leakage & Scatter Barrier								
B n t	Patient scatter barrier calculationTransmission factorP d_{sca}^2 d_{sec}^2 / (a WNumber of TVL requiredThickness of shielding material required	equation U T F/400) Log ₁₀ (1/B) n TVL	2.73E-03 2.56 738 mm					
	TADR considerations							
DR _m t _e W _{ha} W _{hb} W _h	Input values Maximum dose output rate @ 1 m Thickness of shielding material employed Maximum workload based on actual time/procedure (IAEA) W above expressed in Gy h ⁻¹ Smaller of W _{ha} and W _{hb}	<i>unit</i> Gy min ⁻¹ mm Gy h ⁻¹ Gy h ⁻¹	12 837 36 600 36 Gy					
B _{el} B _{ep} IDR _L IDRp IDR DR _m R _h	Transmission factor - Leakage - expected Transmission factor - pat scat - expected Instantaneous Dose Rate due to leakage IDR due to patient scatter $DR_m 60 \text{ a} (F/400) B$ Total IDR Maximum dose output rate @ 1 m Maximum dose in-any-hour	equation $1/(10^{(t_e/TVL_l)})$ $1/(10^{(t_e/TVL_p)})$ $DR_m 60B_{el}/ds^2/1000$ $_{ep} / (d_{sec}^2 d_{sca}^2)$ $IDR_p + IDR_L$ unit conversion $IDR W_h U / DR_m$	0.0029083 0.0012409 4.04E-05 Sv h ⁻¹ 1.74E-04 Sv h ⁻¹ 2.15E-04 Sv h ⁻¹ 720 Gy h ⁻¹ 10.7 μSv					
/	Hoang T. Vu, Fall AAPI Meeting, Novemb	M Midwest Chapter ber 3rd, 2007 < 20 µSv]	radr limit ²¹					

TABLE 5.4. FIRST TVL IN MM CONCRETE FOR PATIENT
SCATTER RADIATION AT VARIOUS SCATTERED ANGLES
(Table B.5a in #151)
scatter

angle	Co-60	4MV	6MV	10MV	15MV	18MV	20MV	24MV
15	223	320	367	410	436	449	457	447
30	213	248	261	275	285	288	290	293
45	197	223	229	233	237	238	239	240
60	189	201	205	209	211	211	212	212
90	151	169	171	173	174	174	174	175
135	128	143	144	144	145	145	145	145

Neutron Shielding Materials

- Hydrogenous materials are most effective for neutrons
- Concrete ($\rho = 2.35 \text{ g/cm3}$)
- Water content is important, at least
 5.5% by weight
- 2.2 MeV γ from thermal neutron capture in H
- Average γ energy from neutron capture= 3 MeV
- Maximum γ energy from neutron capture = 10 MeV
- TVL ~ 8.3"
- Heavy Concrete
- Higher densities due to high-Z aggregates
- TVLs for photons lower than concrete (inverse ratio of densities)
- Typically TVLs for neutrons about the same as concrete

Earth (ρ = 1.1 -1.5 g/cm3)

- "Dirt cheap"
- Compacted earth is free from cracks and voids
- Considerable variation in composition, density and water content
- Polyethylene (ρ = 0.92 g/cm3)
- Very effective because of H content
- 2.2 MeV γ from the rmal neutron capture in H
- Borated Polyethylene (ρ ~ 0.92 g/cm3)
- Typically 5% boron by weight
- High thermal neutron capture cross section for boron (3840 b/atom)
- 0.478 MeV γ from thermal neutron capture in boron

Neutron transmission of barrier (B_{Ln})

- P = Design dose limit at point of interest
- W = Workload (dose at 1 m from target)
- U = Use Factor
- T = Occupancy Factor
- d_l = Distance from the target to point of interest
- Y = Leakage neutron yield at 1 m from target (Sv/Gy)

Neutron Dose Equivalent (H_n)

- Kersey's Method
- Modified Kersey's method (McKinley & Huffman 2000, Wu & McKinley 2003)

$$H_{n,D} = (H_0) \left(\frac{S_0}{S_1}\right) \left(\frac{d_0}{d_1}\right)^2 10^{-\left(\frac{d_2}{5}\right)}$$

$$H_{n,D} = 2.4 \times 10^{-15} \varphi_{A_{1}} \sqrt{\frac{S_{0}}{S_{1}}} \left[1.64 \times 10^{-\left(\frac{d_{2}}{1.9}\right)} + 10^{-\left(\frac{d_{2}}{770}\right)} \right]$$

- H_{n,D}= neutron dose equivalent (Sv n⁻¹ m²)
- φ_A= neutron fluence per unit absorbed dose (m⁻²Gy⁻¹) given in Eq. 2.16 NCRP 151
- S_o/S₁ = ratio of the inner maze entrance cross sectional area to the cross sectional area along the maze
- TVD= Tenth value distance (m) that varies as the square root for the S₁
- TVD = $2.06 \sqrt{S_1}$

TVL= 5m

Neutron Source Strength(Q_n)

 The neutron yields are summarized in Appendix B: Table B-9

 Siemens18 MV had a lower Q_n (0.88) than the Varian 18 MV (1.22)

Fig. B.1. Graph of neutron source strength (Q_n) (neutrons per gray of x-ray absorbed dose at isocenter) as a function of nominal endpoint energy for data presented in Table B.9.

Capture Gamma Dose at Maze door

Linac	Neutron Dose at Maze Door		
Captur	e Gamma Dose at Maze door		
1. Dete	ermination of the neutron fluence at point A		
A	Surface Area of treatment room	unit	
	Follow the example shown in Figure a		
	Height of room	m	
	Protruding thickness of primary barrier for ceiling	m	
	Room width to maze wall	m	
	Length of room	m	
	Protruding thickness of primary barrier for wall 1	m	
	Protruding thickness of primary barrier for wall 2	m	
	Calculation for room surface area S		
S	see example: S=2x[7.8x(4.2-0.55)+(9-0.6-0.6)x(4.2-0.55)+(9-0.6-0.6)x7.8)		

4.2

1.1

7.8

9.0

1.2 1.2

236 m²

		B Neutron fluence				
		Input values for neutron fluence calculation				
C) _N	Neutron source strength neutrons per x-ray Gy at isocenter		1.22E+12 <u>QN.xls</u>		
d	1	Distance from isocenter to point A	m	6.4		
d	2	Distance from point A to maze door	m	8.5		
		Calculation for φ_A at inner maze point A				
φ	A	Total neutron fluence per isocenter x-ray Gy $Q_N^*[1/(4\pi d_1^2)+6.66/(2\pi S)]$		7859960036 n-m ⁻²		
7		C Calculation for capture gamma dose Dop in Gy @ door per Gy @isocenter				
D)φ	Capture γ dose at door Wu method 5.7x10 ⁻¹⁶ x ϕ_A x 10 ^(-d₂/6.2)		1.91E-07 Gy per Gy		
		TVDn=3.9 for 15MV, 5.5 for above	m	5.5		
D	φ	Capture γ McG2 method 6.9x10 ⁻¹⁶ x ϕ_A x 10 ^(-d₂/TVDn)		<mark>1.54E-07</mark> Gy per Gy		
	Input values for calculation of neutron dose at the maze door					
A	r	Cross-sectional area of inner maze entrance	m ²	10.2		
S	1	Cross-sectional area of maze	m ²	8.76		
		Hoang T. Vu, Fall AAPM Midwest Cha Meeting, November 3rd, 2007	apter	29		

TABLE 5.7 APPARENT NEUTRON SOURCE STRENGTH ON IN 1012 NEUTRONS PER X RAY;¤GY AT ISOCENTRE [14]

(Table B.9 in #151)						
		Stated				
Manufacturer	Model	MV	NAP MV	QN		
Varian	1800	10	unknown	0.06		
GE	Saturne 41	12	11.2	0.24		
GE	Saturne 41	15	12.5	0.47		
Varian	2100 EX	15	13	0.50*		
Philips	SL-20	17	17	0.69		
Varian	1800	15	13	0.76		
Siemens	KD	20	16.5	0.92		
Varian	1800	18	16.8	1.22		
GE	Saturne 43	18	14	1.5		
Philips	SL-25	22	20.4	2.37		
GE	Saturne 43	25	18.5	2.4		
*Wu and McGinley [29]						
NAP is the nominal accelerating potential defined in the TG21 protocol [35]						

Calculation for neutron dose at the maze door			
Tenth value length for maze neutron	2.06*SQRT(S ₁)	6.1	
Neutron dose equivalent in Sv per x-ray Gy at isocenter			
2.4x10 ⁻¹⁵ x $\phi_A x \sqrt{(A_r/S_1)x[1.64x10^{-1.9}+10^{-1.9})}$		8.23E-07 Sv per Gy	
Input value for calculation of weekly capture gamma and neutron dose			
Workload	Gy wk ⁻¹ or Sv wk ⁻¹	600	
Capture gamma dose at maze door both methods	${\sf W}$ x ${\sf D}_{\! \phi}$	1.14E-04 9.27E-0	5
Capture gamma dose at maze door	$W \ge D_{\phi}$	1.14E-04 Sv wk ⁻¹	
Neutron dose at maze door	W x D _n	4.94E-04 Sv wk ⁻¹	
	sum of both	6.08E-04 Sv wk ⁻¹	
Photon dose due to head leakage and scatter from previous sheet		6.94E-05 Sv wk ⁻¹	

D

 T_N

 D_n

W

Ε

G

D _{gp}	Grand total for photon before door		W x D ϕ + D _{pd}	1.84E-04 Sv wk ⁻¹
	Door shielding evaluation		in inch converted to mm	
	Proposed steel frame thickness		0.5	12.7 mm
t _l	Proposed lead thickness		0.5	12.7 mm
t _b	Proposed BPE thickness		4	101.6 mm
	TVL in steel for photon at door			
T _{lp}	TVL in lead for photon at door McG2 p76		mm	6.1
·	TVL in BPE for photon at door			
	TVL in steel for neutron at door			
	TVL in lead for neutron at door			
T _{bn}	TVL in BPE for neutron at door McG2 p.6	6	mm	45
	note TVLs are quite dependent on maze	length		
	final neutron dose due to BPE alone at d	oor	W D _n 10^(-t _b /T _{bn})	2.72601E-06 Sv wk ⁻¹
	final photon dose due to lead alone at do	or	D_{gp} 10^(-t _l / T_{lp})	1.52188E-06 Sv wk ⁻¹
	Grand total of dose after door n and ph			4.24789E-06 Sv wk ⁻¹
			unit conversion	0.004 mSv wk ⁻¹
			unit conversion	$0.42 \text{ mrem wk}^{-1}$
Hoang T. Vu, Fall AAPM Midwest Chapter Meeting, November 3rd, 2007				32

Questions?

Thank you very much for your attention!