Image Guided Radiation Therapy – Edward Experience

> John Fan, PhD Edward Hospital Naperville, Illinois

Outline

- PET/CT Simulation
- Manage Respiratory Motion 4DCT Simulation
- On Board Imaging

Challenges in Radiation Therapy

- Identifying the tumor
- Defining the tumor and target
- Hitting the target
- Knowing the tumor response to radiation

Imaging and image registration is the key for addressing these challenges

Imaging Techniques are Rarely Used "Solo"

- CT
- MR
- PET
- Ultrasound
- PET/CT Simulation
- 4DCT Simulation
- On Board Imaging

PET for Radiation Therapy Planning

Why PET/CT Simulation?

- Distribution of activity is imaged
 - Physiology, function, biology
- Complementary to (~ anatomic) CT and MR
- Increased sensitivity compared to CT alone
- PET and CT in the same treatment position
- Accurate PET/CT fusion

PET/CT Simulation

PET can Decrease Target Volume

PET can Decrease Target Volume

PET can Increase Target Volume

PET can Increase Target Volume

PET can Increase Target Volume

Are they Moving?

More Challenges in Radiation Therapy

- Identifying the tumor
- Defining the moving tumor and target
- Hitting the moving target
- Knowing the tumor response to radiation

Types of Motion

- Intra-fraction
 - Within each fraction (example: lung)
- Inter-fraction
 - Between fractions (example: prostate)
- Combined with deformation
 - Example: pancreas

How to Monitor Breathing?

- Chest / abdomen height
 - Varian RPM System
- Belt based
 - Anzi Medical System (pressure based belt)
 - Philips (pneumatic belt)
- Metric spirometry

Varian RPM

4D CT Imaging

4DCT Image Sorting

Manage Respiratory Motion

ITV on Ave Study Set for Planning

ICRU 62 Target Volume Delineation

- GTV Gross Tumor Volume
- CTV Clinical Target Volume
- PTV Planning Target Volume

ICRU 62 Target Volume Delineation

- PTV = CTV + IM + SM
 - IM Internal Margin, due to physiologic variations
 - SM Setup Margin, due to technical factors

ICRU 62 Definition

- OAR Organ at Risk
- PRV Planning Organ at Risk Volume
 - Margin added to OARs

ITV ---- Customized Target Volume

IGRT can Reduce Internal Margin, Setup Margin, and Margin to OAR

On Board Imager – Varian Trilogy

Image Matching

- 2D-2D matching of OBI images to DRRs
 - Anatomy matching
 - Implanted fiducials
- 3D-3D cone beam CT image match to treatment planning CT images
 - Anatomy matching
 - Structure set alignment of GTV, CTV, PTV, or contoured structures to acquired image

2D-2D Image Match

- Orthogonal pair of images
 - AP and Lateral Brain, H&N
 - Orthogonal Oblique's Pelvis

Brain: 2D-2D Anatomy Match

Brain: 2D-2D Anatomy Match

Pelvis: 2D-2D Anatomy Match

Spine: 2D-2D Anatomy Match

Prostate with Implanted Markers

Prostate Implanted Marker Match

Prostate Implanted Marker Match

Lung CBCT – before matching

Lung CBCT – matched images

H&N CBCT 3D-3D Match

CBCT to Evaluate Tumor Response

CBCT to Evaluate Tumor Response

Average Shifts for Prostate

Average Shifts for All Prostate Patients

Average Shifts for GBM

Average Shifts for All GBM Patients

Average Shifts for H&N

Average Shifts for All H&N Patients

Average Shifts + 2 X Standard Deviation

Site	Vert	Lng	Lat	Vector
Prostate	6.9	6.9	5.2	9.5
Prostate Bed	5.4	6.1	4.6	7.9
Brain (GBM)	4.9	4.5	3.7	6.6
H&N	3.0	4.1	3.8	5.4
Lung	5.8	10.1	6.1	11.3
Pancreas	8.6	10.5	6.9	13.3

IGRT Action Levels

– Require Physician/Physics Review

Prostate (Fiducials or Clips)	7 mm
GBM	5 mm
H&N	4 mm
Other (Lung, Pancreas, etc)	10 mm

Quality Assurance

- Daily QA
 - Couch shifts with KV images
- Monthly QA
 - KV image isocenter alignment
- Annual
 - CBCT isocenter alignment

 Couch Shift Accuracy with KV Imaging

KV Image -Isocenter Alignment

KV Image – Isocenter Alignment

OBI - Some Limitations

- CT resolution and quality of DRR's are limiting factors
- Fiducial artifacts on CT images
- Artifacts on CBCT due to organ motion
- Treatment couch can not tilt and spin

Conclusion

- PET/CT and 4DCT Simulations help us to
 - Delineate target volume and critical structure more accurately
 - Customize, often decrease, internal margin
- On Board Imaging gives us valuable tool to
 - Reduce setup error
 - Track inter-fractional target / organ motion
 - Reduce internal & setup margins
 - Track tumor response Adaptive Therapy

Adaptive Radiation Therapy, or a Black Hole?

Acknowledgement

Betsy Wang (Physicist) Julie Gruben (Dosimetrist) Mike Slechta (Dosimetrist) Robert Foster (Dosimetrist) Joy Coldebella (Lead Therapist) Diane Jennings (Therapist)