Differentiation of Low- and High-Grade Pediatric Brain Tumors Using A Non-Gaussian Diffusion Model

Muge Karaman¹, Yi Sui¹,², Frederick C. Damen¹,³, Yuhua Li⁵, and X. Joe Zhou¹-⁴

¹Center for MR Research, Departments of ²Bioengineering, ³Radiology, and ⁴Neurosurgery, University of Illinois Hospital & Health Sciences System, Chicago, IL; ⁵Department of Radiology, Xinhua Hospital, Shanghai, China
Introduction

- Pediatric brain tumors are the most common solid tumors in children.

- Differentiation between low-grade and high-grade brain tumors has prognostic significance.

- Brain biopsy may not be an option due to the inoperable location in the areas such as brain stem.

- The noninvasive diagnosis is not only desirable but also required.
Introduction

• Accurate differentiation of low-grade and high-grade brain tumors using MRI is challenging.
• Conventional T1w / T2w imaging has limited specificity.

![Image showing MRI scans of low-grade and high-grade tumors]

Low-grade
Pilocytic Astrocytoma

High-grade
Medulloblastoma
Diffusion MR Imaging for Brain Tumors

• Diffusion MR Imaging is able to reveal the cellular information of brain tissues\(^*\).

 • Cellularity
 • Cell size distribution
 • Cytoplasm ratio

• Diffusion is modeled by a random walk of the particles:

 • Random walk (RW) → Gaussian
 • Continuous time random walk (CTRW) → Non-Gaussian

From RW to CTRW

- In Gaussian RW theory,
 - jump length (Δx) variance and
 - waiting time between jump lengths (Δt) are finite and Gaussian.

\[
\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial |x|^2} \quad \text{solution} \quad s(q, \bar{\Delta}) = \exp(-D_{1,2}|q|^2 \bar{\Delta})
\]

- In non-Gaussian CTRW theory,
 - jump length variance and
 - waiting time between jump lengths are not constrained by Gaussian distribution.

\[
C D_t^\alpha(P(x,t)) = D_{\alpha,\beta} \frac{\partial^{2\beta} P(x,t)}{\partial |x|^{2\beta}} \quad \text{solution} \quad s(q, \bar{\Delta}) = E_\alpha(-D_{\alpha,\beta}|q|^{2\beta} \bar{\Delta}^\alpha)
\]
ADC Approach

• Apparent Diffusion Coefficient (ADC) values are computed from the mono-exponential model.
 • Gaussian model
 • Diffusion signal is modeled by

\[
s(b) = s_0 \exp(-bD)
\]

• ADC in tumors*
 • High-grade tumors have lower ADC compared to low-grade tumors.
 • Significant overlap between groups can compromise the specificity for differential diagnosis.

Limitations of ADC Approach

- Diffusion in complex heterogeneous tissues is non-Gaussian.

- High-grade brain tumors have more complex and heterogeneous structures than low-grade ones.

- Signal attenuation in brain tissues cannot be well described by a mono-exponential decay, as predicted by the Gaussian diffusion model.

\[
s(b) = s_0 \exp(-bD)
\]

Non-Gaussian Diffusion Models

- Bi-exponential, stretched-exponential, statistical, \(q \)-space, kurtosis, continuous time random walk (CTRW) models, etc.
- CTRW model

\[
\frac{\partial}{\partial t} D_t^\alpha(P(x, t)) = D_{\alpha,\beta} \frac{\partial^{2\beta} P(x, t)}{\partial |x|^{2\beta}}
\]

\[
\text{solution} \quad s = s_0 E_{\alpha} \left[-(bD_m)^\beta \right]
\]

- \(D_m \): diffusion coefficient, similar to ADC
- \(\alpha \): fractional power of the waiting time
- \(\beta \): fractional power of the jump length

- CTRW model has been examined on healthy fixed rat brain**, but not yet in a clinical human study.

Objective

• To investigate the feasibility of using CTRW parameters (D_m, α, and β) to differentiate low- and high-grade tumors.

• To compare the outcomes of the differentiation by CTRW parameters and the conventional ADC value.
Patient Group

- 54 patients with histopathologically proven brain tumors
 - 38 males, 16 females
 - Age range: 4 months – 13 years
 - 24 low-grade
 - 15 WHO grade I, e.g. Pilocytic Astrocytoma
 - 9 WHO grade II, e.g. Diffuse Astrocytoma
 - 30 high-grade
 - 2 WHO grade III, e.g. Anaplastic Ependymoma
 - 28 WHO grade IV, e.g. Medulloblastoma
Imaging Protocol

• Image Acquisition
 • GE 3T MR scanner
 • T1-FLAIR, T1+C, T2
 • Matrix = 256 × 256
Imaging Protocol

• Image Acquisition
 • GE 3T MR scanner

• T1-FLAIR, T1+C, T2
 • Matrix = 256 × 256

• Diffusion weighted imaging
 • 12 b-values = 0 ~ 4000 s/mm²
 • TR/TE = 4700/100 ms
 • Slice thickness = 5 mm
 • Δ = 38.6 ms, δ = 32.2 ms
 • 1 average
 • FOV = 22 cm × 22 cm
 • Matrix size = 128 × 128
 • Scan time = 3 min
Data Analysis

\[s = s_0 E_\alpha \left[-\left(b D_m \right)^\beta \right] \]

\[b = \left(\frac{G_z}{D_m} \right)^2 \left(\frac{1}{3} \right) = \text{diffusion gradient duration} \]

\[= \text{diffusion time} \quad G_z = \text{diffusion gradient amplitude} \]
Data Analysis

• Tumor ROI Determination

• Whole tumor coverage
• Guided by T1 + C, T1 FLAIR, T2 images.
• Areas of necrosis, cyst, hemorrhage, edema and calcification were avoided.
Examples of D_m, α, and β Maps

Low-grade (WHO II - 17m) Ependymoma

<table>
<thead>
<tr>
<th>T1 FLAIR</th>
<th>T1 + C</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D_m ($\mu m^2/\text{ms}$) α β
Examples of D_m, α, and β Maps

High-grade (WHO IV - 18m)
Medulloblastoma
Mean Values of CTRW Parameters

\[
D_m (\mu m^2/ms) \quad \alpha \quad \beta
\]

<table>
<thead>
<tr>
<th>Grade</th>
<th>(D_m) ((\mu m^2/ms))</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-grade</td>
<td>1.50±0.50</td>
<td>0.95±0.04</td>
<td>0.92±0.07</td>
</tr>
<tr>
<td>High-grade</td>
<td>0.75±0.20</td>
<td>0.90±0.03</td>
<td>0.81±0.06</td>
</tr>
</tbody>
</table>

\(p\) value*:
- <0.001
- <0.001
- <0.001

*Mann-Whitney U test
k-means Clustering Analysis

- Tumor grade classification
 - Low-grade vs. High-grade

- Multivariate analysis using D_m, α, and β

- Partition
 - n observations $\rightarrow (D_m, \alpha, \beta)$ estimates from 54 patients.
 - into $k = 2$ distinct groups \rightarrow low-grade and high-grade so that observations within a group are similar.
3D Scatter Plots

Mean CTRW parameter values (using gold standard)

k-means clustering analysis (blind analysis)

\[\beta \]

\[\alpha \]

\[D_m \]
Performance Analysis

- Analysis was performed
 - by using the tumor differentiation results from the k-means clustering
 - by using the histopathology as a reference.

<table>
<thead>
<tr>
<th></th>
<th>Monoexponential (ADC)</th>
<th>CTRW (D_m, α, β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.93</td>
<td>0.87</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.54</td>
<td>0.83</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.75</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Conclusion

• CTRW parameters can be significantly different between the low-grade and high-grade pediatric brain tumors.

• The combination of CTRW parameters produced better accuracy and specificity than the ADC values obtained from the monoexponential model.

• The CTRW model can provide quantitative imaging markers to improve diagnosis of pediatric brain tumors.
Acknowledgements

Richard L. Magin, PhD
Guanzhong Liu, MD
Christian Wanamaker, MD
Frederick W. Damen
Keith Thulborn, MD, PhD
Mina E. Khalil
Carson Ingo, PhD
Qing Gao, PhD
Michael Flannery
Hagai Ganin

Founding sources:
NIH-NIMH, R01 MH081019
NIH-UL1RR029879
CCTS of Univ. of Ill. at Chicago