

Tim Williams – Economics of Proton Therapy ASTRO 2007 Proton Panel

Reasons to Establish a Proton Center

- Belief in Clinical Efficacy
- Program Differentiator
- Revenue Generation
- Institutional Prestige
- · Defensive Maneuver

Physics

- Requires higher energy: 250 MeV p+ ~ 30cm
- Requires magnetic field for beam acceleration and beam steering

PTC-H 250 MeV Synchrotron Ring

Beam Delivery System

Gantry

- Position beam in different angles (isocenttric)
- Mounting of imaging systems
- Lasers
- Fixed beam port (horizontal/inclined)
- Nozzle
 - Delivery the protons
 - Dose monitoring system
 - Beam shaping devices
 - Protect patient from unwanted radiation
 - Imaging (optional)

Multi-room Systems

Hitachi •

- IBA
- Mitsubishi
- Mitsubishi*
- Optivus
- Siemens * Varian
- 235 MeV proton synchrotron 320MeV/u synchrotron (20 cm - ¹²C)

230MeV cyclotron

270 MeV proton synchrotron

- 250 MeV proton synchrotron
- ProTom
- 330 MeV/u proton synchrotron 430 MeV/u synchrotron (30 cm - ¹²C)
 - 250MeV superconducting cyclotron

* Proton and ¹²C

Single Room Systems

- 250 MeV gantry mounted compact superconducting synchrocyclotron. In production. · Mevion: • IBA ProteusOne
- Tomotherapy 250 MeV Dielectric Wall Accelerator. Compact linear accelerator. Feasibility testing.

What Is Intensity Modulated Radiation Therapy (IMRT)

An approach to deliver conformal therapy with optimized non-uniform beam intensities: • Use computer mathematical scoring to design non-uniform radiation fields,

• Use dynamic motion of Multileaf Collimator to "paint" dose where desired - Intensity Patterns.

Why is IMRT Possible Today?

- Computer power sufficient to calculate plans in reasonable amount of time
- Linear Accelerators are computer controlled
- Automated methods of machine setup and setup verification are convenient and commonplace
- Multileaf collimators have good mechanical precision and reliability

New H&N Cases at MDACC (2007)

IMRT: computeroptimized IMRT

Constant Range Modulation Width and Distal Range Compensation

- Usually use range modulator wheels
- **Distal range** compensator (usually plastic or wax)
- **Block/Aperture for** collimation

Pencil Beam Scanning is Simplyer

- Variable energy to treat tumor at different depth
- Dose conformality for both distal and proximal surfaces
- Sharp pencil beam to replace aperture

Why is PBS Possible Today?

- Better power supply for magnets (dipole; quadruple; fast scanning coils)
- More advanced accelerator technology
 - More efficient accelerator
 - Better beam optics (smaller spots)
 - Fast energy change and current modulation
 - Automatic beam tuning and control system
- Scanning nozzle (~ MLC)

Advantages for using Pencil **Beam Scanning**

- Fewer neutrons
- No physical compensator or aperture
- Sparing of healthy tissues proximal to the target
- Large treatment field
- Intensity and energy modulated proton therapy (IMPT)
 - Inverse planning
 - Dynamic dose painting (control points)

Step-and-shoot delivery of proton beam scanning Discrete spot scanning method

Proton Beam Delivery Mode

- Passive Scatter (PS)
 - Use scatter technique to create a large treatment field
 - Range modulation is required
- Uniform Scanning (US)
- Pre-programmed PBS with beam aperture (more tolerant of motion)
- Pencil Beam Scanning (PBS)
 - Use magnetic field to scan the treatment field
 - High intensity modulation (better plans)
 - Energy (range) can be changed spot-by-spot

Raster Scan vs. Spot Scan

- Intensity modulation is much higher in spot scanning technique, which leads to better treatment plans
- Raster scanning may be more tolerant for organ motion

Image Guidance

- X-ray source to axis distance = 2 meters
- Detector to axis distance = 1 meter

Results (no gating)			Orthogonal – 3s MDAndersor		
Parent Hills-7 die Parent				Receive France alcolarity of a	

SFO vs. MFO

- Single-Field Optimization
 - Treat the entire target from one beam
 - Less normal tissue sparing
 - Relatively more robust for range uncertainties
- Multi-Field Optimization
 - Simultaneous optimization of multiple beams for one or more targets
 - Better plan (on paper) and more tissue sparing
 - Sensitive to range uncertainties and organ motion

Robustness Evaluation								
Lange Uncertainty Parameter Organizer								
Generate Range Und	ertainty Parameters shift [cm]:	Calibration curve error (%):						
Range Uncertainty P	Range Uncertainty Parameters							
ID _	X [cm]	Isocenter shift Y [cm]	Z (cm)	Curve Error [%]				
RU1	+0.30	0.00	0.00	+2.00				
RU2	+0.30	0.00	0.00	-2.00				
RU3	-0.30	0.00	0.00	+2.00				
RU4	+0.30	0.00	0.00	-2.00				
RU5	0.00	+0.30	0.00	+2.00				
RU6	0.00	+0.30	0.00	-2.00				
RU7	0.00	-0.30	0.00	+2.00				
RU8	0.00	-0.30	0.00	-2.00				
RU9	0.00	0.00	+0.30	+2.00				
RU10	0.00	0.00	+0.30	-2.00				
RU11	0.00	0.00	-0.30	+2.00				
RU12	0.00	0.00	-0.30	-2.00				

Challenges

- Development and optimal use of IMPT
- Measurement dosimetry
- In vivo range verification
- Robustness plan evaluation
- Robust plan optimization
- Motion management strategies
- Dose-guided setup and adaptive RT
- Workflow optimization and efficiency
 - Auto-segmentationWorkflow assessment and optimization
 - Setup outside of treatment room

Opportunities

- Development and optimal use of IMPT
- Measurement dosimetry
- In vivo range verification
- Robustness plan evaluation
- Robust plan optimization
- Motion management strategies
- Dose-guided setup and adaptive RT
- Workflow optimization and efficiency
 - Auto-segmentation
 - Workflow assessment and optimization
 - Setup outside of treatment room

Future Proton Therapy Machines will be Different from Today!

