Clinical Impact of Novel Brachytherapy Dose Calculation Algorithms

AAPM DVC, May 15, 2015

F. Mourtada, PhD, DABR, FAAPM
Christiana Care, Newark, DE

Adjunct Associate Professor
MD Cancer Center, Houston, TX &
Thomas Jefferson University,
Philadelphia, PA
Disclosure

• Member of AAPM TG-186
• Member of AAPM Working Group - WGMBDCA
Learning Objectives

• Describe the dosimetric uncertainty in modern brachytherapy.

• Review the AAPM TG-186 and WGMBDCA guidelines to commission modern dose calculation engines.

• Identify factors requiring standardization to achieve dosimetric consistency among clinics.
Acknowledgements

TG-186
- Luc Beaulieu, CHU de Quebec (Chair)
- Äsa Carlsson-Tedgren, Li University
- Jean-François Carrier, CHU de Montreal
- Steve Davis, McGill University
- Firas Mourtada, Christiana Care
- Mark Rivard, Tufts University
- Rowan Thomson, Carleton University
- Frank Verhaegen, Maastro Clinic
- Todd Wareing, Transpire inc
- Jeff Williamson, VCU

WG-MBDCA
- Luc Beaulieu, CHU de Quebec (Chair)
- Frank-André Siebert, UKSH (Vice-chair)
- Facundo Ballaster, Valancia
- Äsa Carlsson-Tedgren, Li University
- Annette Haworth, Peter MacCallum CC
- Goeffrey Ibbott, MD Anderson
- Firas Mourtada, Christiana Care
- Panagiotis Papagiannis, Athens
- Mark Rivard, Tufts University
- Ron Sloboda, Cross Cancer Institute
- Rowan Thomson, Carleton University
- Frank Verhaegen, Maastro Clinic
Common Past/Present Radionuclides in Brachytherapy (LDR/HDR)

<table>
<thead>
<tr>
<th>Radionuclides</th>
<th>$T_{1/2}$</th>
<th>E_{avg}(KeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>226Ra</td>
<td>1,622 y</td>
<td>830</td>
</tr>
<tr>
<td>60Co</td>
<td>5.26 y</td>
<td>1,250</td>
</tr>
<tr>
<td>137Cs</td>
<td>30 y</td>
<td>662</td>
</tr>
<tr>
<td>192Ir</td>
<td>74.1 d</td>
<td>380</td>
</tr>
<tr>
<td>198Au</td>
<td>2.7 d</td>
<td>410</td>
</tr>
<tr>
<td>131Cs</td>
<td>~10 d</td>
<td>29</td>
</tr>
<tr>
<td>125I</td>
<td>~60 d</td>
<td>28</td>
</tr>
<tr>
<td>103Pd</td>
<td>~17 d</td>
<td>22</td>
</tr>
</tbody>
</table>

F. Mourtada, Ph.D.
New BT Sources

- How sensitive is dosimetry for novel radionuclides and eBT to material heterogeneities (and general differences with TG-43)?

Slide from Rivard

From Multiple Sources/Manual Loading to a Single Source/Afterloading

Ra-226 Tubes (manual) → Cs-137 Tubes (manual) → Cs-137 Pellet LDR (afterloading) → Ir-192 PDR/HDR (afterloading)
HDR/PDR Remote Afterloader

HDR: 10 Ci
PDR: 1-2 Ci

F. Mourtada, Ph.D.
ICBT- Gynecology

- Intracavitary: Places radioactive sources within a body cavity (cervical cancer)
- LDR (temporary, 48hrs) or HDR (temporary, minutes)
Recently Introduced Applicators
CT/MR (HDR/PDR Afterloader)

- Utrecht Interstitial Fletcher
- Fletcher Shielded
- Interstitial Ring

Shielded ovoids
Interstitial Examples

- Interstitial
 - Permanent
 - GU - prostate (I-125, Pd-103, Cs-131)
 - GYN - pelvic side wall (Au-198)
 - GI - rectum (Au-198)
CLINICAL APPLICATION TO APBI (ACCELERATED PARTIAL BREAST IRRADIATION)
Surface (Topical)

Places the radioactive sources on top of the area to be treated (choroidal melanoma)

Temporary: ~72hrs (LDR)

A custom-made radiation plaque. On the left is the inside of a plaque with the radiation seeds. On the right is the gold coating on the outside of the plaque.
Skin Surface Applicators
Ir-192 HDR

Freiburg Flap
Leipbzig (shielded)
Brachytherapy Dose Calculation (i.e. since 1995)

- TG43 formalism is the standard methodology for dose calculation.
- TG43 was created primarily for interstitial low energy brachytherapy purposes.
- Dose calculation is done assuming material is uniform water phantom.

\[
\frac{\dot{D}(r, \theta)}{\omega(r)} = S_K \cdot \Lambda \cdot \frac{G_L(r, \theta)}{G_L(r_0, \theta_0)} \cdot g_L(r) \cdot F(r, \theta)
\]

- $\dot{D}(r, \theta)$: dose rate to water in water at point $P(r, \theta)$
- S_K: air kerma strength
- Λ: dose rate constant
- $g_L(r)$: radial dose function
- $G_L(r, \theta)$: geometry function (line source approximation)
- $F(r, \theta)$: 2D anisotropy function

History

- 1995 – TG43 (I-125, Pd-103)
 - Provided recommendations for dose calculation for low energy source dosimetry (E<50keV).
- 2004 – TG43U1
 - Clarifications, 1D vs 2D formalism, etc.
- 2007 – TG43U1S1
 - Increased number sources, etc.
- 2010 “Erratum” of TG43U1S1
Prior to TG-43:
Sievert Integral Source Geometry

Fig. 1.
Geometry of dose calculation for linear radium sources.
Consensus Data Sets

- Report gives recommendations on how to experimentally and theoretically obtain dosimetric parameters for sources.
 - Experimentally: detector type, volume averaging effects, phantom materials, energy response characterization, etc.
 - Theoretically (MC): Cut off thresholds, good practice guidelines (e.g. # of histories)

• Uncertainty analysis
Clinical Source Registry Available

• 3 current source registries available
 – IROC- Houston (RPC)
 – Carlton University (CAN)
 – ESTRO
Low-Energy Brachytherapy Sources - examples

- Amersham Health model 3702 source
- NASI model MED3631-A/M or MED3633 source
- Source Tech Medical STM1251 seed
- IsoAid Advantage
- Bebig model 2301 source
- Imagyn model IS-2501 source
- Mentor Frosteaseed
- Implant Sciences 3500

Axxent electronic BT source: 27 keV
TG-43 Protocol
Phantom Size Requirement

• TG43 has recommendations for “along and away” dose rate tables to distances far away from the source (e.g. 5cm for I-125)

• Requires phantom sizes in MC calculations to be large enough to give full scatter at large distances (10+ cm for HEB)
 – Radius of 40 cm recommended.
Advantages of TG43

• An analytic, uniform approach standardizes dose calculation worldwide.

• Simple to implement into the TPS and 2nd calculation spreadsheet for a clinical physicist
Limitations of TG43

• Assumes a water medium with superpositions of single source positions.
 – No inter-source attenuation effects
 – Full scatter conditions
 • Most low energy applications have full scatter e.g. prostate implants
 – No variable tissue composition
 • More of an issue for low energy sources than for high energy sources
Limitations of TG43, cont

• High energy brachytherapy sources suffer more from effects of the scatter conditions than low energy brachytherapy sources.
 – Applications can range from deep (gyn) to shallow (skin).

• Neglects applicator shielding effects for treatments such as shielded ovoids or cylinders.
 – Incorrect correlation of doses reported with toxicities
TG43 has served us well!

- Is still!
- Worldwide uniformity
- Well-define process for source parameters
- Source specific
- Fast
- Dose optimization (IP)
Dose Calculation for Photon-Emitting Brachytherapy Sources with Average Energy Higher than 50 keV: Full Report of the AAPM and ESTRO

Report of the

High Energy Brachytherapy Source Dosimetry (HEBD) Working Group

August 2012
TG-229 Report Contains

1. Review the construction and available published dosimetry data for high-energy ^{192}Ir, ^{137}Cs, and ^{60}Co sources.

2. Perform a critical review of the existing TG-43U1 formalism applied to HEB.

3. Develop a complete consensus dataset to support clinical planning for each source model.

4. Develop guidelines on the use of computational and experimental dosimetry of high-energy brachytherapy sources.
TG43-based TPS can fail to accurately calculate dose

• Dose perturbations due to contrast medium and air pockets
• Effect of patient tissue inhomogeneities
• What is the impact on
 – PTV
 – Skin
 – Chest wall/ribs

Rivard, “Brachytherapy Dose Calculation Formalism Dataset Evaluation, and treatment planning system Implementation (AAPMSS 2009)
One size does not fit all!
Sensitivity of Anatomic Sites to Dosimetric Limitations of Current Planning Systems

<table>
<thead>
<tr>
<th>anatomic site</th>
<th>photon energy</th>
<th>absorbed dose</th>
<th>attenuation</th>
<th>shielding</th>
<th>scattering</th>
<th>beta/kerma dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>prostate</td>
<td>high</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>breast</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
</tr>
<tr>
<td>GYN</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skin</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>lung</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>penis</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
</tr>
<tr>
<td>eye</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
</tbody>
</table>

Importance of the Physics: Water vs Tissues

Mass Energy-Absorption Coefficients Relative to Water as a function of Energy

TG-186

< 100 keV large differences
Tissue composition impact is minimal (Ir-192)

But- Effect of Phantom Size

Scattered Photon Contribution in Brachy

A. K. Carlsson and A. Ahnesjo, Med Phys 27(10), 2000
Physics « Rule of Thumb »

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{192}Ir</td>
<td>Scatter condition</td>
</tr>
<tr>
<td>$^{103}\text{Pd}/\ ^{125}\text{I}/\ \text{eBx}$</td>
<td>Absorbed dose (μ_{en}/ρ)</td>
</tr>
<tr>
<td></td>
<td>Attenuation (μ/ρ)</td>
</tr>
<tr>
<td></td>
<td>Shielding (applicator, source)</td>
</tr>
</tbody>
</table>
Alternatives to TG43

Rivard, Beaulieu and Mourtada, Vision 20/20, Med Phys 2010

Table I. Status of MBDCAs that can account for radiation scatter conditions and/or material heterogeneities and were useable in brachytherapy treatment planning systems as of 12 May 2010.

<table>
<thead>
<tr>
<th>MBDCA system</th>
<th>Sponsor(s)</th>
<th>Radiation type</th>
<th>Clinical use</th>
<th>FDA/CE mark status</th>
<th>Release date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAQUE SIMULATOR</td>
<td>Astrahan(^a)</td>
<td>125I + 103Pd photons</td>
<td>Y</td>
<td>N</td>
<td>1990</td>
</tr>
<tr>
<td>Collapsed cone</td>
<td>Ahnesjö, Russell, and Carlsson(^b)</td>
<td>192Ir photons</td>
<td>N</td>
<td>N</td>
<td>1996</td>
</tr>
<tr>
<td>BRACHYDOSE</td>
<td>Yegin, Taylor, and Rogers(^c)</td>
<td>0.01–10 MeV photons</td>
<td>N</td>
<td>N</td>
<td>2004</td>
</tr>
<tr>
<td>MCI</td>
<td>Chibani and Williamson(^d)</td>
<td>125I + 103Pd photons</td>
<td>N</td>
<td>N</td>
<td>2005</td>
</tr>
<tr>
<td>GEANT4/DICOM-RT</td>
<td>Carrier et al.(^e)</td>
<td>Any</td>
<td>N</td>
<td>N</td>
<td>2007</td>
</tr>
<tr>
<td>Scatter correction</td>
<td>Poon and Verhaegen(^f)</td>
<td>192Ir photons</td>
<td>N</td>
<td>N</td>
<td>2008</td>
</tr>
<tr>
<td>Hybrid TG-43:MC</td>
<td>Price and Mourtada(^g) and Rivard et al.(^h)</td>
<td>Any</td>
<td>Y</td>
<td>Y</td>
<td>2009</td>
</tr>
<tr>
<td>ACUROS</td>
<td>Transpire/Varian(^i)</td>
<td>192Ir photons</td>
<td>Y</td>
<td>Y</td>
<td>2009</td>
</tr>
</tbody>
</table>
Brachytherapy Dose Calculation Methods

Model-Based Dose Calculation: MBDCA

Analytical / Factor-based

TG43, PSS, CCC, GBBS, MC

Rivard, Beaulieu and Mourtada, Vision 20/20, Med Phys 2010
Current STD: Full scatter in water medium

Implicit particle transport: Heterogeneity, accurate to 1st scatter. GPU friendly

Gold STD for source characterization and other applications

No particle transport. No heterogeneity, shields. Primary can be used in more complex dose engine

Solves numerically transport equations. Full heterogeneity.
Grid-Based Boltzmann Solver (GBBS)

\[\hat{\Omega} \cdot \vec{\nabla} \Psi(\hat{r}, E, \hat{\Omega}) + \sigma_t(\hat{r}, E) \Psi(\hat{r}, E, \hat{\Omega}) = Q^{\text{scat}}(\hat{r}, E, \hat{\Omega}) + Q^{\text{ex}}(\hat{r}, E, \hat{\Omega}) \]

- **Position:** \(\hat{r} = (x, y, z) \)
 mesh position discretization (finite elements)
- **Energy:** \(E \)
 Energy bins (cross section)
- **Direction:** \(\hat{\Omega} = (\theta, \phi) \)
 Angular discretization

« multi-group discrete ordinates grid-based …»

2D: Daskalov et al (2002), Med Phys 29, p.113-124
GBBS Benchmarks for 137Cs Pellets

Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part III, Comparison to Monte Carlo simulation in voxelized anatomical computational models

K. Zourri, E. Pantelia, and A. Mouttou
Medical Physics Laboratory, Medical School, University of Athens, 75 Mitropoleos, 115 27 Athens, Greece

L. Salkalou
Department of Physics, Nuclear and Particle Physics Section, University of Athens, Ilisia, 157 71 Athens, Greece

E. Georgiou, P. Karalis, and P. Popioulis
Medical Physics Laboratory, Medical School, University of Athens, 75 Mitropoleos, 115 27 Athens, Greece

(Received 26 July 2012; revised 15 November 2012; accepted for publication 16 November 2012; published 18 December 2012)
MBDCA Calculation Speed…

- Can be relatively fast
 - Can be done within a few minutes
 - < 1 sec per dwell-position (MC on GPU)

- BUT, MC (CPU-based), CC and AcurosBV® are all too slow to be coupled to IP for dose optimization
TG-186 Report

Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation

1. Recommendations to MBDCA early-adopters to evaluate:
 • phantom size effect
 • inter-seed attenuation
 • material heterogeneities within the body
 • interface and shielded applicators

2. Commissioning process to maintain inter-institutional consistency

3. Patient-related input data

4. Research is needed on:
 • tissue composition standards
 • segmentation methods
 • CT artifact removal

Approved by
ESTRO (EIR, ACROP)
AAPM (BTSC, TPC)
ABS (Phys Cmte, BoD)
ABG (Australia)

TABLE OF CONTENTS

I INTRODUCTION ... 6210
 I.A Problem description 6210
 I.B Report overview and rationale 6210
 I.C Review of tissue and applicator material heterogeneity effects .. 6211
 I.C.1 Low energy regime, seeds, and miniature x-ray sources 6211
 I.C.2 Intermediate energies: 192Ir 6212
 I.C.3 Higher energies: 192Ir 6213
 I.C.4 Cone beam computed tomography 6213

II REVIEW OF MODEL-BASED BRACHYTHERAPY DOSE-CALCULATION ALGORITHMS .. 6213
 II.A Semiempirical approaches 6213
 II.B Model-based algorithms 6214
 II.B.1 Collapsed-cone superposition/convolution method .. 6214
 II.B.2 Deterministic solutions to the linear Boltzmann transport equation 6214
 II.B.3 Monte Carlo simulations 6214

III DOSE SPECIFICATION MEDIUM SELECTION 6214
 III.A Relationship between $D_{m,m}$ and $D_{w,m}$ in the large cavity regime 6216
 III.B $D_{m,m}$ and $D_{w,m}$ relationships in the small and intermediate cavity regimes 6216
 III.C Recommendations .. 6217
 III.D Areas of research 6218

IV CT IMAGING AND PATIENT MODELING 6218
 IV.A Literature review 6218
 IV.A.1 Material characterization 6219
 IV.A.2 CT segmentation 6220
 IV.A.3 CBCT segmentation 6220
 IV.A.4 Dual energy CT and spectral CT 6220
 IV.A.5 CT artifacts ... 6221
 IV.A.6 Other imaging modalities 6221

IV.B Recommendations .. 6221
 IV.B.1 Consensus material definition 6221
 IV.B.1.a Prostate .. 6221
 IV.B.1.b Breast .. 6222
 IV.B.1.c Calcifications 6222
 IV.B.1.d Other materials 6222
 IV.B.1.e Applicators, sources, and other devices 6222
 IV.B.2 Material assignment method 6223
 IV.B.2.a Use of other imaging modalities 6224
 IV.B.3 CT/CBCT artifact removal 6224

IV.C Areas of research 6224
 IV.C.1 Determination of tissue composition 6224
 IV.C.2 Segmentation methods 6224
 IV.C.3 CT artifact removal 6224

V MBDCA COMMISSIONING 6225
 V.A Literature review 6225
 V.B From TG-43 to MBDCA-based commissioning 6225
 V.B.1 MBDCA commissioning level 1 6225
 V.B.2 MBDCA commissioning level 2 6225
 V.B.3 MBDCA commissioning workflow 6226
 V.B.3.a Test case plans and data availability 6226
 V.B.3.b DICOM test case importing 6227
 V.B.3.c TG-43-based dose calculation tests 6227
A generic high-dose rate ^{192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

Facundo Ballester
Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjasot 46100, Spain

Åsa Carlsson-Tedgren
Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden and Department of Medical Physics, Karolinska University Hospital, Stockholm SE-171 76, Sweden

Domingo Granero
Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia E-46014, Spain

Annette Harroth
Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Institute of Technology, Melbourne, Victoria 3000, Australia

Firas Mountada
Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19713

Gabriel Paiva Fonseca
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, São Paulo, Brazil and Department of Radiation Oncology (MAASTRO). GROW. School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6200 BN, The Netherlands

Kyveli Zourari and Panagiotsis Papagiannis
Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, Athens 115 27, Greece

Mark J. Rivard
Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111

Frank-André Siobert
Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany

Ron S. Sioboda
Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada

Ryan Smith
The William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria 3000, Australia

Rowan M. Thomson
Carleton Laboratories for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada

Frank Verhaegen
Department of Radiation Oncology (MAASTRO), GROW. School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6200 BN, The Netherlands and Department of Medical Physics, McGill University Health Centre, Montréal, Quebec H3G 1A4, Canada

Javier Vijande
Department of Atomic, Molecular and Nuclear Physics, University of Valencia and IFIC (CSIC-UV), Burjasot 46100, Spain

Yunzi Ma and Luc Beaulieu
Département de Radio-Oncologie et Axe oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, Québec, Québec G1R 2G9, Canada and Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec G1V 0A6, Canada

(Received 3 December 2014; revised 31 March 2015; accepted for publication 24 April 2015; published XX XX XXXX)
Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy

Leonard Kim, M.S., A.Mus.D., Venkat Narra, Ph.D., and Ning Yue, Ph.D.

Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New

- 20 patients – 15 Contura + 5 Savi
- Linear relationship indicates predictability
Balloon-Based Accelerated Partial Breast Irradiation With Contura™: Comparison Between Conventional TG-43 and Brachyvision Acuros™ Dose Calculation Methods

Ruben Ter-Antonyan, PhD¹, Paul W. Read, MD, PhD¹, Bernard F. Schneider, MD, PhD¹, Anneke T. Schroen, MD, MPH², Stanley H. Benedict, PhD¹, Bruce P. Libby, PhD¹. ¹Radiation Oncology, University of Virginia Health System, Charlottesville, VA; ²Surgery, University of Virginia Health System, Charlottesville, VA.

<table>
<thead>
<tr>
<th></th>
<th>TG-43</th>
<th>Acuros™</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV_eval D95 (cGy)</td>
<td>322.7</td>
<td>311.9</td>
<td>(3.4 ± 0.5) %</td>
</tr>
<tr>
<td>PTV_eval D1 (cGy)</td>
<td>816.4</td>
<td>806.6</td>
<td>(1.2 ± 0.6) %</td>
</tr>
<tr>
<td>PTV_eval D_min (cGy)</td>
<td>238.4</td>
<td>254.1</td>
<td>(-7.1 ± 7.1) %</td>
</tr>
<tr>
<td>PTV_eval V150 (cm³)</td>
<td>26.5</td>
<td>24.0</td>
<td>(9.2 ± 1.3) %</td>
</tr>
<tr>
<td>Skin D_max (cGy)</td>
<td>439.0</td>
<td>420.1</td>
<td>(4.6 ± 1.2) %</td>
</tr>
<tr>
<td>Skin D_mean (cGy)</td>
<td>242.8</td>
<td>226.6</td>
<td>(6.7 ± 0.6) %</td>
</tr>
<tr>
<td>Skin D_skin_pt (cGy)</td>
<td>297.1</td>
<td>278.1</td>
<td>(6.7 ± 1.7) %</td>
</tr>
</tbody>
</table>

5 Contura patients
• 30 patients evaluated Skin_{max}, Rib_{max}, D90, V100, V150, V200

• Variety of applicators including interstitial
 • Results for interstitial were within 3% or 3cc

• Balloon based:
 • Skin_{max} – 8% including >10% if only using central lumen/single dwell
 • Rib_{max} - 5% on average
 • Target coverage less (3.5% – 8%)
 • Larger balloons had greater differences in V100, etc.
ABS 2015 Conclusions-APBI

• TG43 for APBI—impact
 – If you are using high levels of contrast – your overall dose is decreased
 – Skin dose is decreased ~ 4-10%
 – Dose to ribs is decreased ~ 5 -7%
 – Dose coverage is probably slightly reduced

• New methods of dose calculation are promising and show we have gains to be made in accuracy
Fletcher CT/MR Shielded Applicator Set
MDACC Clinical Outcomes (n=12)

• Enrolled on prospective protocol of image based brachytherapy

• PDR brachytherapy with Fletcher CT/MR Shielded Applicator

Dose Distribution at Ovoids

TG43 (no shields) TG186 (shields modeled)

200
150
100
50%
Dose Distribution at Ovoids

TG43 (no shields) TG186 (shields modeled)
Dose Distribution at Ovoids

TG43 (no shields) TG186 (shields modeled)
Dose Distribution at Ovoids

TG43 (no shields) TG186 (shields modeled)

200 150 100 50%
Dose Difference at Ovoids

1780
1190
790
595
395
100 cGy
DVH Analysis
% Reduction

- **Rectum: Mean (Range)**
 - D2cc 15% (5-22)
 - D1cc 15% (4-22)
 - D0.1cc 13% (3-22)

- **Bladder**
 - D2cc 6% (3-12)
 - D1cc 6% (3-11)
 - D0.1cc 6% (1-11)

- **Sigmoid**
 - D2cc 2% (1-14)
 - D1cc 2% (1-13)
 - D0.1cc 2% (1-12)
ABS2015 Conclusions-GYN

• The new brachy dose calculation algorithms provide more accurate dose distributions for GYN brachytherapy than the standard TG-43.

• Unshielded GYN CT/MR applicators impact is within +/-5%

• Shielded GYN Applicator significantly reduces dose to rectum, bladder, and sigmoid (up to 25%)
Conclusions

• With the recent introduction of heterogeneity correction algorithms for brachytherapy, the Medical Physics community is still unclear on how to commission and implement these into clinical practice.

• Recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms.