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Technology Challenge: TG 142 QA 

• 1.4 Mpixels, 16-bit, CCD camera to provide 0.2 mm x 0.2 mm 
per pixel resolution for a 20 cm x 20 cm image 

• CCD operates at integration mode 

• Optical / Laser imaging without buildup on phosphor 
• Radiation imaging with buildup on phosphor 

Light field with 
ODI 

 

Room Lateral 
Laser 

6 MV x-ray at 
dmax 

12 MeV electron 
at dmax 

 



An Unified QA System for TG 142 
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Optical path 

Semi-transparent 
phosphorus screen 

CCD 
camera 

Neutron/ 
x-ray shielding 

• A mirror system that allows capturing images at the 
isocenter plane with a stationary camera 



1st prototype 

Suspended setup for gantry rotation measurements 
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Radiation Isocenter QA 

• Results of isocentricity 

– Gantry Starshot diameter 

– Collimator Starshot diameter 

• The use of Center Of Mass (COM) calculations of a small field 
(2x2 cm) for collimator, table and gantry rotation 

• For collimator:    
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Collimator   Gantry  

COM diameter = 0.3 mm 

Film star-shot, 
diameter = 0.7 mm 

Method can be applied to gantry rotation instead of gantry star-shot 



Raven QA: Product-Grade Prototype 
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Snap Shot (at present) 

Non-ionizing Expertise/operator dependence 
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 Invasive 

Non-ionizing option Ionizing radiation 

Soft tissue surrogate (truth?) 

Inter-fraction methods:  Intra-modal ultrasound imaging  
 

Intra-fraction methods:  Implanted Markers 
 

• Emergence of MRI-Radiation Machines 

Technology Challenges: IGRT of Soft Tissue Targets 

Inter-fraction methods:  Cone beam CT, MV CT 
 



Phase 1 Prototype MRI-GRT 

Room 
height 
3.5m 

1m 
Confidential To be used only for the 

purpose supplied 



MRI-GRT project : Current Status 

• MRI Magnet full on at 1.5T and able to image 
• Linac able to radiate 
• MLC able to move leaves 
• Gantry able to rotate 
 
At the same time ! 
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Cine MRI on MRI-GRT concept platform 

• 2 frames per second 
• Kidneys, liver and  spleen can be followed in real time 

Courtesy UMC Utrecht 
.                                                                    

COMPANY - CONFIDENTIAL 



(a) CT only 

(b) CT with 
ultrasound 

Integrated 3D ultrasound/CBCT imaging  for soft tissue 
IGRT 

Hypothesis:  
• US-CBCT offers an non-

ionizing, non-invasive 
inter- and intra-fraction 
solution for soft tissue 
targets 

• Prostate, liver, pancreas  



Challenges of US 
imaging 

Solutions 

Reproducibility / operator 
dependence  

Robotic placement of a 3D 
probe 

Deformation of anatomy  

Keep US probe in place during 
irradiation while avoiding 
beams  Intra-fraction 
monitoring 

Soft tissue registration  
By definition, auto-fusion of 
CBCT and real-time US 

Require simulation/planning of patient in treatment 
position with the ultrasound/CBCT system in place 



  

Vernier scale 
compressor Model probe 

 Passive robotic arm and gel phantom 

– A passive robotic arm with 1D linear (vernier scale) actuator 
– Deformable gel phantoms with embedded 12 PMMA beads 

(1.2, 2.8, 3.2 mm in diameter) 
– CT scans of repeat cycles compress/release to determine 

reproducibility 
– Intra-, inter-fraction reproducibility all within 1 mm 

 



Ex-vivo Bovine Liver in gel phantom 

• Gel phantom was 
overly simplistic 
with uniform 
deformation 

• A more realistic 
ex-vivo liver 
phantom was 
devised 

• Comparison of 
deformation was 
made between 
ultrasound and 
model probe.  



Reproducibility of Deformation 
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•  Significant compression force differences between gel and liver phantom 
•  Suitability of phantom material is of concern 

Contact forces lower with model probe 
The robotic arm needs to be stiffened 
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Prostate  (Force = 14 N) 



Prostate Images 
Ultrasou
nd 

CT with 
real 
probe 

CT with 
model 
probe 



Prostate (Force = 14 N; 10 N ~ 1 kg): 
 Marker Position Reproducibility in Interquartile Range 

Model Probe: 3D mean error = 0.7mm Real Probe: 3D mean error=0.6 mm 

No Probe: 3D mean error = 0.4mm 
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Prostate: 
Probe-Induced Marker Displacement (from no probe) 

3D mean error 
= 0.2mm 



Liver at Breath-hold (Force = 40 N) 



Liver CT and Ultrasound Images 



Liver (at Breath-hold): 
 Probe-Induced Marker Displacement 

3D mean error 
= 4.1 mm 



Model of Elekta-Resonant 4D prostate system: 
Novel transperineal (TPUS) scan 



Penile bulb 

Urethra 
Rectal interface 

Bladder 

Prostate 
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Analytic database for personalized medicine and 
data sharing in radiation oncology 

Radiation Oncology and Molecular Radiation Sciences 
Johns Hopkins University 

 



Re-engineering the Cooperative Research Model 

• < 3% of patients treated are 
enrolled in cooperative clinical 
trials 

• Required data submission for QA 
and approval – “big problem” 

• Average duration to complete a 
clinical trial  
– > 5years 
– outpaced by advances 

• No feedback from community 
practice 

• Data limited for re-use 
– Data/Knowledge lost 

OncoSpace 2008, JWW 

Patient Tx  
Follow up 

Journal 
Publication 

Treatment 
Protocol 

Current Trial Practice 

STOP 
 
START 
OVER 

Present (RTOG) 



Publication of 
Data to DB’s 

Treatment 
Protocol 

Patient Tx 
Follow up 

Journal 
Publications 

Distributed 

JHU: Re-engineering the Cooperative Research Model 

• Keep data local and available 
in an active database 

• Send queries to data, 
extracting only answers 
• e.g. Validate the PTV 

margin prescribed for lung 
SBRT 

• Facilitate data-reuse, decision 
support and education 

• Promote data sharing for CER 
• Tools for data capture to 

populate OncoSpace 
 



…………… 

OncoSpace:  Radiaton Oncology Model  
for Data Sharing and Decision Support 

Surgery Pathology 

JHU 

Genomics 

JHU 

Radiation  
Oncology 

I4M
 Infra-structure 

Institute 1 

Institute n 

Ophthalmology 

OncoSpace 

Decision Support 
Data-mining 

Shape and Change Tools 

Analytic Database 

I4M Infra-structure 

I4M: Integration of Imaging, Information and Intervention in Medicine 



OncoSpace 2008, JWW 

Active Data base 

MS Web 
Services 

PACs 

View/ 
Analyze 
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Tools Security 
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View/ 
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Labs 
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Project 1 

Clinicia
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Researchers Bio- 
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Project 2 

Project 3 

1. Integration of clinical 
workflow with data 
collection to populate 
OncoSpace. 
– Enable Mosaiq/Aria  and 

TPS to capture data 
2. Optimize database 

architecture for secured 
distributed web-access 

3. Tools for query, analysis, 
navigation and decision 
support  

4. Data mining, decision 
support and bio-statistic 
research 

 



Radiation 
dosimetry 

History 
Isolated PHI Tumor and Disease 

Medication-
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Toxicity 

Lab values 

Tumor – OAR and 
relationships 

Patient 
Geometry and 
transformations 

Database organization 



MOSAIQ RO information system  
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Safety and Quality 
Oncospace: Query & Analysis 
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• How to ask questions of the data? 
– Given this DVH, what is the risk of toxicity? 



Safety and Quality 
Oncospace: Query & Analysis 
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• How to ask questions of the data? 
– Given this DVH, what is the risk of toxicity? 



Active Data base 
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Physics to engage Biology in Radiation Therapy 

• Questions and Challenges: 
– The validity of EUD, NTCP, ……………  
– Validation and optimization of biological image guided or 

molecular targeted radiation therapy 
– Others questions:  biological target volume??? 

• Present small animal radiation research methods bear little 
resemblance to human treatment  

• A pressing need to down-size human treatment to bridge 
small animal laboratory research 



Small Animal Radiation Research Platform 

• Hopkins-Xstrahl partnership 
• Integrated 3D-Slicer-GPU based treatment planning system 
• Computer controlled 

– 360o gantry rotation 
– Non-coplanar delivery 

 



SARRP CBCT: “Pancake” geometry 



Small Animal Treatment Console 



SARRP Slicer- 3D RTP: GPU Dose – CBCT Engine 

Set Iso 
 Assign Wt 

Prescribed dose: 100 cGy 

3 x 3 collimator 

Set Gantry, 
Couch angle 



Dose to 
aluminum in 

aluminum 

Dose to 
water in 

aluminum 
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Dose (cGy) 

Depth (mm) 

Monte Carlo (Tsiamas, Harvard) 
SC (Cho, JHU) 



Comparison of SC with MC  
 Correcting for density scaling 
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On-board BLI/BLT for Beam’s Eye View Irradiation with the 
SARRP (R01 CA158100) 

CCD 
camera 

Mirror 



BLT 

CBCT 

Coronal Transverse 

BLT Reconstructed with only one wavelength (630nm). accurate in vertical position, but 1-
2mm error along axial direction. Multi-spectral recon would improve the accuracy. 



Combining Stereotactic Radiation and Anti-PD1 Therapy  
in an Orthotopic Mouse Glioma Model (Zeng et al) 
 



Experimental Design 

Day  No Tx  RT only  PD-1 only RT+PD-1  

0 Tumor Implantation  
7 Bioluminescent Imaging 

10    Radiation  1st antibody dose 
Radiation;  

1st antibody dose 

11            

12       2nd antibody dose 2nd antibody dose 

13         

14       3rd antibody dose 3rd antibody dose 
21  Bioluminescent Imaging 

Radiation = 10 Gy in 3 mm beam  
Antibody = anti-PD-1 antibody, 200 µg/mouse 



Survival Outcome  



Flank Re-challenge 

Naïve Mice 

“Cured” Mice 



What do we do for the next 5 years? 

• Medicine (and radiation oncology) is undergoing tremendous 
changes driven by technologies and information 

• Treatment strategies will employ multiple therapeutic agents 
with radiation 

• Personalized medicine will be based on genetics, treatment 
response, functional/anatomic  …. 

• Physics need to expand beyond technologies: 
– Technology, Informatics, Biology,……  
– We must innovate 

 



4D MRI (JHU/Siemens) 

• 4D CT is a 2 min 
snapshot, not often re-
evaluated 

• Long duration (15 – 30 
min) MRI to represent 
treatment 

HASTE 



4D MRI – Tracked Motion 



4D MRI – Characterization of Motion 



4D MRI – Characterization of Motion 

-- * -- 
-- o -- 



Motion Management: A case for Breath-hold 

• Breath hold imaging is the gold standard 
• Breath-hold and gating are not mutually exclusive 
• Active Breathing Control for reproducible breath-hold 

• Integrate the ABC process to maximize compliance 
• Short, normal or deep inspiration BH (ABC/gating) 
• Gate the accelerator with the ABC device 

 
 
 
 



Diagnosis vs Prescription 



OncoSpace 2008, JWW 

OncoSpace: Adapting the SkyServer Approach 

• SDSS is a collaborative effort 
to map 25% of the sky 

• SkyServer publishes data 
from the SDSS 

• >> 100’s of new discoveries 
in astrophysics 

• Increased scale and scope for 
research 

• Shared resources 
– Methodology 
– Software 
– Expertise 
– Experience 

• New opportunities 
– Analysis 
– Visualization 
– User experience 

• Skyserver.sdss.org 

Alex Szalay PhD - JHU 
Jim Gray PhD - Microsoft 

http://cas.sdss.org/dr5/en/
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