Combining microstimulation and fMRI in an awake behaving monkey

Presented by: Leeland B. Ekstrom

April 2006

Advisors: Wim Vanduffel & Bruce Rosen

MGH / MIT / HMS Martinos Center for Biomedical Imaging
Monkey fMRI

- Apply fMRI to traditional neuroscience model → non-human primate visual system (Rhesus monkey)
- Bridge tool between human fMRI & past monkey work
- Subjects awake & behaving, not anesthetized
Why Monkey fMRI?

Three main reasons:

- Validate assumptions about human / animal correspondence → same tool, same experiment

- Complement other traditional modalities, guide to new areas of interest

- Platform for combining imaging with invasive techniques → explore interactions within a network, probe mechanisms of fMRI
Overview – What we did

- Developed method to **simultaneously microstimulate** specific brain regions while performing **fMRI**

- Microstimulation = focal injection of current to specific site to artificially induce output

- Stimulated site = **Frontal Eye Fields (FEF)**, node in eye-movement control network (target selection, movement planning), source of spatial attention?
Anatomical Location

Arcuate Sulcus

FEF Location: 2-6 mm below cortical surface, anterior bank of arcuate sulcus
Objectives of Study

Aim: Investigate functional effects of feedback connections originating in FEF by combining electrical stimulation & fMRI in awake, behaving monkeys

1) Is functionally defined in-vivo tract tracing possible?
2) Modulate visual representations throughout visual cortex by feedback from FEF?
Determine **connectivity** (and direction) between topographically separated regions in the brain, as a step to understanding functional relationships.

- Traditional histological method: inject radioactive tracer (ie. tritiated amino acid) or fluorescent dye, allow time for transport, examine brain \rightarrow **very invasive** (ie. subject sacrificed)

- Diffusion-weighted MRI tractography \rightarrow still awaiting validation
Background II – Frontal Eye Fields

- Primate visual system uses **discrete jumps** to ‘see’ (high-acuity fovea) → known as **saccades**
- Stimulating FEF (one in each hemisphere) induces saccades
- Thought to be site of **target selection** (has neurons that carry both visual & movement info)
Background III – Spatial Attention

- Typical visual scene carries more information that can be simultaneously processed by visual system

- Filter to identify behaviorally relevant information for further examination \Rightarrow spotlight of attention

- Covert spatial attention known to modulate strength of visual representations & visual perception

- Source of this mechanism hotly debated
Background IV – Pre-motor Theory of Attention

- **Hypothesis**: Pre-motor theory of attention – structures involved in *saccade initiation* are (one of) the top-down source(s) for this modulation

- Previously shown that FEF *microstimulation modifies behavior* in spatial attention tasks & also produces spatial attention-like effects in *visual cortex* (V4)

- **Enhancement** occurs only when visual stimulus location corresponds to movement field of FEF site
Background V – A Visual Example

Visually driven neural activity

Site A | Site B

FEF (& other areas) | Rest of Brain

Visual Cortex

X
Objectives of Study

Aim: Investigate functional effects of feedback connections originating in FEF by combining electrical stimulation & fMRI in awake, behaving monkeys

1) Is functionally defined in-vivo tract tracing possible?

2) Modulate visual representations throughout visual cortex by feedback from FEF?
Methodology Employed

- **Electrodes:**
 - In MR compatible manner, **25 \(\mu \text{m} \) diameter microwires chronically** implanted in anterior bank of Arcuate sulcus in two juvenile male rhesus monkeys
 - **Saccades consistently evoked** during MRI acquisition (now 20+ mo. after surgery)

- **functional MRI:**
 - Siemens Allegra 3T for GE-EPI \(T_2^* \) functional images (TE 24 ms / TR 4000 ms, 55 slices @ 1.25 mm\(^3\) voxels)
 - **MION-enhanced, awake monkey fMRI** (monkey sits in Sphinx position with head immobilized while performing passive fixation task \(\rightarrow \) liquid reward)
 - ISCAN IR camera used to monitor point of regard, administer behavioural reward
Experimental Setup
Anatomical Evidence: Electrodes in FEF

- Anterior bank of Arcuate sulcus, superior branch
- Anterior bank of Arcuate sulcus, inferior branch
- 7 T turbo spin-echo image at 0.3 x 0.3 x 1 mm³ resolution
- Slice caudal to Principal sulcus
Behavioral Evidence: Saccades Evoked in 3.0T Scanner

Eye position recorded at 120 Hz with infra-red camera

- **Electrical Stimulation**
 - Parameters:
 - 250 ms trains of bi-phasic square-waves @ 335 Hz
 - Currents to evoke saccades ranged from 47 ± 13 µA to 276 ± 58 µA across electrodes
 - fMRI experiments used SUB-THRESHOLD CURRENTS (~50%) → NO SACCADES
Experiment #1 – Electrical Stimulation without Visual Stimuli

4 Electrode Cycle / TR

p < 0.05, corrected
Experiment #1 – 4 Electrode Cycle / TR

- Claustrum
- Putamen
- S Colliculus

Huerta et al., 1987
Experiment #1 – 4 Electrode Cycle / TR

Lat IPS

V1

Δ% MR SIGNAL

Schall et al., 1995
Experiment #1 – Test - Retest
Same Contrast in Experiments Separated by 1 Month
Experiment #2 – Electrical Stimulation Effects on Visual Representations

4 Electrode Cycle / TR

p < 0.001 masked by p < 0.05, all uncorrected
Objective #2 – Modulation of Visual Information
Eye Position During Different Stimulation Epochs

- **Percent fixation**
 - Conditions: 1, 2, 3, 4
 - $n = 31$, $p = 0.664$

- **Saccades/min**
 - Conditions: 1, 2, 3, 4
 - $n = 31$, $p = 0.904$
So FEF is the Source of Spatial Attention, Right?

- Not necessarily…

- Stimulating FEF produces specific modulations throughout visual cortex and visual processing stream, similar to spatial attention

- Demonstrating same modulations during spatial attention task or ability to interfere with attention via stimulation \(\rightarrow \) next step

- FEF, other oculomotor node or some combination???
Conclusions

1) Is in-vivo tract tracing possible? → YES
2) Modulate visual representations throughout visual cortex by feedback from FEF? → YES

- We have proved a **causal** relationship between artificially increased output of the FEF and fMRI activity in anatomically connected regions
- This data supports the hypothesis that the FEF can modulate visual representations in occipital cortex, similar to covert spatial attention
- Repetition in 2nd subject, specificity of stimulation (i.e. mismatch condition) → in progress
Acknowledgements

Giorgio Bonmassar
Pieter Roelfsema

Leonardo Angelone
Helen Deng
Tamara Knutsen
Mark Khachaturian
Young Kim
Hauke Kolster
Francisca Leite
Joe Mandeville
Hernan Millan
May Purdon
Reza Rajimehr
Yuka Sasaki
Roger Tootell
Larry Wald
Combining microstimulation and fMRI in an awake behaving monkey

Questions?

Or contact lekstrom@mit.edu
fMRI Basics

- Visual Stimulus / Cognitive Task
- Neuronal Activation
- Metabolic Demands
 - Δ Cerebral Blood Flow
 - Δ Cerebral Blood Volume
 - Δ Cerebral Metabolic Rate for O$_2$
- Detectable MR Signal
Spatial Attention – An Example

Photo courtesy www.politicalcap.com
Experiment #1 – 4 Electrode Cycle / TR
Test - Retest
Experiment #1 – 4 Electrode Cycle / TR
Test - Retest
Stimulation Timing During fMRI

TR 1

1

133 ms

2

250 ms

ISI = 1 s

3

617 ms

TR 2

4

1000 ms
Experiment #3 – Retinotopic Specificity of Electrical Stimulation Effects

4 Electrode Cycle / TR

p < 0.001 uncorrected
Experiment #3 – Retinotopic Specificity

V1L V1R
Δ% MR Signal

V4v TEO
Δ% MR Signal

FST
Δ% MR Signal

Δ% MR Signal
Electrical Stimulation Effects on Visual Representations – Masking Explained
Connections with FEF

Huerta et al., 1987
Connections to FEF

Schall et al., 1995