Commissioning a Proton Therapy Machine and TPS

Sung Yong Park, Ph.D.

McLaren Proton Therapy Center

McLaren Cancer Institute

McLaren - Flint

2012 GLC Fall Meeting, 2012.11.09

Overview of Proton Beam Therapy Commissioning McLaren Proton Therapy Project Summary

Overview of Proton Beam Therapy

Accelerated proton beams are used for the treatment of cancer

Dose beyond the Bragg peak: p ~ 1-2 %

C ~ 15 % Ne ~ 30 %

Rationale of Bragg Peak Therapy

- Localization is superior
- Lower entrance dose
- No exit dose

Energy Loss of Proton

Electromagnetic Interaction with Electrons

Distal Distribution

Mass electronic stopping power is the energy lost by protons in electronic collision in traversing the distance dx in a material of density **p**.

 $\text{S}/\rho = 1/\rho[\text{dE/dx}] \propto 1/V^2$

Energy Loss of Protons

Electromagnetic Interaction with Nuclear

Multiple Coloumb Scattering

- Protons are deflected frequently in the electric field of nuclei.
- Beam broadening can be approximated by a Gaussian distribution.
- Lateral distribution

Energy Loss of Protons

Lateral dose fall-off: Protons vs. Photons

- Hardronic interaction with nuclear
- Bigger transverse momentum transfer than EM interaction
- High LET process nuclear recoil, fragmentation
- Induced radioactivities long-lived isotopes

Depth-Dose Curves for Proton and Photon Beams

W Chu

Goals of Radiation Therapy

Dose Sparing: Protons vs. Photons

Protons vs. Photons

Proton Therapy is highly conformal

CSI using 3D CRT, Tomotherapy, and Proton Therapy

Yoon MG, Park SY, et al., Int. J. Radiat. Oncol. Biol. Phys., 2011

Protons vs. Photons

History of Proton Therapy

- 1919 Rutherford proposed existence of protons
- 1930 E. O. Lawrence built first cyclotron
- 1946 Robert Wilson proposed proton therapy
- 1955 Tobias et al treated patients at LBL
- 1961 Kjellberg et al treated patients at HCL
- 1972 MGH received first NCI grant for proton studies at HCL
- 1983 Tsukuba Univ. in Japan treated patients
- 1985 PTCOG
- 1991 First hospital-based proton facility at LLUMC
- 2009 27 facilities worldwide treating patients; over 67,000 patients treated with protons.

Patient Statistics (for the facilities out of operation; end of 2010):

Patient Statistics (for the facilities in operation end of 2011):

	WHERE	PARTICLE	FIRST			WHERE	PARTICLE	FIRST	PATIENT	DATE OF]
			PAT	İEN				PATIENT	TOTAL	TOTAL	
					Canada	Vancouver (TRIUMF)	p	1995	161	Dec-11	ocular tumors only
Belgium	Louvain-la-Neuve	n	1991		China	Wanjie (WPTC)	p	2004	1078	Dec-11	no patients in 2011
Capada		P _	1070		China	Lanzhou	C ion	2006	159	Dec-11	
Canada		π	1979		England	Clatterbridge	p	1989	2151	Dec-11	ocular tumors only
Germany	Darmstadt (GSI)	C-ion	1997		France	Nice (CAL)	p	1991	441/	Dec-11	ocular tumors
Japan	Tsukuba (PMRC, 1)	p	1983		France	Orsay (CPO) Dodin (UMI)	p	1991	5034	Dec-11 Dec-11	4540 ocular tumors
Japan	Chiba	р	1979		Germany	Munich (PPTC)		2000	1809	Dec-11	ocular tumors only
Japan	WERC	p	2002		Germany	HIT Heidelberg	Cion	2009	568	Dec-11	
Russia	Dubna (1)	p	1967		Germany	HIT. Heidelberg	D	2010	94	Dec-11	
Sweden	Uppsala (1)	, D	1957		Italy	Catania (INFN-LNS)	p	2002	290	Dec-11	ocular tumors only
Switzerland	Villigen PSI (SIN-Piotron)	- -	1980		Italy	Pavia (CNAO)	C ion	2011	5	Dec-11	-
Switzerland	Villigen DSL (ODTIS 1)	<i>n</i>	1000		Japan	Chiba (HIMAC)	C ion	1994	6569	Dec-11	11 with scanning
Switzenand	Viligen FSI (OFTIST)	P	1964		Japan	Kashiwa (NCC)	p	1998	870	Dec-11	estimated
CA., USA	Berkeley 184	р	1954		Japan	Hyogo (HIBMC)	p	2001	3198	Dec-11	
CA., USA	Berkeley	He	1957		Japan	Hyogo (HIBMC)	Cion	2002	1271	Dec-11	
CA., USA	Berkeley	ion	1975		Japan	Isukuba (PMRC, 2)	p	2001	2100	Dec-11 Dec-11	
IN., USA	Bloomington (MPRI, 1)	р	1993		Japan	Koriyama-City	p n	2003	1279	Dec-11	
MA., USA	Harvard	p	1961		Japan	Gunma	Cion	2000	271	Dec-11	
NM., USA	Los Alamos	π_	1974		Japan	Ibusuki (MMRI)	p	2010	180	Dec-11	
1 7		1		I	Korea	Ilsan, Seoul	p	2007	810	Dec-11	
					Poland	Krakow	p	2011	11	Dec-11	ocular tumors only
					Russia	Moscow (ITEP)	p	1969	4300	Dec-11	estimated
					Russia	St. Petersburg	p	1975	1372	Dec-11	
					Russia	Dubna (JINR, 2)	p	1999	828	Dec-11	
					South Africa	Themba LABS	p	1993	521	Dec-11	
					Sweden	Uppsala (2) Villigen BSL incl OPTIS2	p	1989	1185	Dec-11	277 coulor tumoro
							p p	1004	1201	Dec-11	211 ocular tumors only
					USA CA	Loma Linda (LLUMC)	n p	1990	16000	Dec-11	estimated
					USA IN.	Bloomington (IU Health PTC)	p	2004	1431	Dec-11	Cotimatou
					USA, MA.	Boston (NPTC)	p	2001	5562	Oct-11	
					USA, TX.	Houston (MD Anderson)	p	2006	3400	Feb-12	
					USA, FL	Jacksonville (UFPTI)	p	2006	3461	Dec-11	
					USA, OK.	Oklahoma City (ProCure PTC)	p	2009	623	Dec-11	
					USA, PA.	Philadelphia Upenn)	p	2010	433	Dec-11	
					USA, IL.	CDH Warrenville	p	2010	367	Dec-11	na data available
					USA, VA.	Hampton (HOP II)	p p	2010	77101	Total	no data available
										rotar	
								thereof	8843	C-ions	
									67904	protons	
				I otal for all facilities (in operation and out of operation):				2054 He			
									1100	Cions	
									9283	other ions	
									83667	protons	
									96537	Grand 10t	al

Worldwide Particle Therapy Facilities

31 PROTON AND 5 CARBON ION THERAPY FACILITIES IN 2011

Europe = 10 + 2 carbon Russia = 3

25 additional institutions are planning to have a charged particle therapy.

Cyclotron

Synchrotron

Cyclotron vs. Synchrotron

	Cyclotron	Synchrotron
Energy	Fixed	Variable
Spill Structure	Continuous	Pulse
Beam extract efficacy	Low (high radiation activity)	High
Temperature stability	Variable	Stable
Beam current	High	Low
Beam quality (momentum spread)	LOW (large)	High (small)

Beam Transport System

Positioning System

Energy Selection System

Beam Shaping Components

Nozzle:

 To spread the proton beam to obtain a uniform dose distribution in a large volume

To measure accurately the dose delivered to the patient

•To help the alignment of the patient with the proton field

Control Interface: Treatment Control Unit (TCU)

Nozzle Beam Delivery Modes

- Double Scattering
 - Field diameter < 25 cm
 - "Large" Penumbra
- Single Scattering
 - Field diameter < 8 cm
 - "Sharp" Penumbra
- Wobbling
 - Field 30x40
- Pencil-Beam Scanning
 - IMPT

Double scattering principle

RM + FS + IC set A

Range Modulator System

Range Modulation

Second Scatterer System

Aperture and Range Compensator

Single Scattering

Uniform scanning principle

Painting a Layer

Courtesy by H. Benteffour, IBA Physics Dept.

Comparison between scattering and scanning

- Deliver many small beams to a tumor using magnetic beam deflection.
- Energy is changed in accelerator to scan each successive layer.

A full set, with a homogenous dose conformed distally <u>and</u> proximally

Pedroni, PSI

Advantages of PBS

Pure PBS nozzle status

Courtesy of H. Bentefour, *PBS physicist in MGH*

Scanning a Non-Uniform Dose Distribution

of passes: 1
lines: 50
irr. time: 4.5 sec
23 x 30 cm
V = 250 cm/sec

Improved Dose Distribution with IMPT

Proton

IMPT

Lomax, PSI

Commissioning?

- Refers to the process whereby the needed machinespecific beam data are acquired, and operational procedures are defined.: beam data acquisition, entry of beam data into an RTP system and testing of its accuracy, development of operational procedures, and training of all concerned with the operation of the new machine. (AAPM Report No. 47)
- => has strong dependency on <u>beam delivery system</u> and <u>treatment</u> <u>planning system</u>.

Proton Commissioning

- Safety Interlocks
- Dosimetric Calibration
- Mechanical
- CT HU to Stopping Power Calibration
- TPS Commissioning
- Imaging System Commissioning
- R&V System
- Beam Modifying Accessories
- Integration Testing
- Clinical Procedures

NCC Proton Therapy Center (IBA, Belgium)

Proteus 235 Specification

- 111

Weight: 220 ton Height: 210 cm Diameter: 434 cm

Energy: 230MeV

Max. extracted beam current: 300nA

RF frequency :106 MHz

Treatment Beam Modes

Universal nozzle

-Passive mode Double Scattering Single Scattering

-**Dynamic mode** Uniform Scanning Pencil Beam Scanning

Clinical Specifications of Proton Beam

Item	Single Scattering	Double Scattering	Uniform Scanning
Range in Patient (g/cm ²)	3.35-20.4	4.51-28.42	3.42-32.1
Range modulation (g/cm ²) adjustment & Size	0.4(R>6), 0.17 9.2	0.2 20.75	0.5 Full
Range adjustment (g/cm ²)	0.09(R>6),0.05	0.1	0.1
Average dose rate (Gy/min)	5.93	3	1.15
Max. Field Size (cm)	4 (D)	24.3 (D)	40X30
Dose Uniformity (%)	1.25	1.05	1.5(R), 2.6(L)
Effective SAD (m)	2.55	2.19	2.12
Distal Penumbra (cm)	0.21	0.23	0.13
Lateral Penumbra (cm)	0.17	0.48	0.30(y), 0.22(x)
	H&N, RS	Conventional	Large Size

Schedule for Beam Data Taking and Commissioning

Room	Procedure	20	2006 200					07	7						
No.	Procedure	11	12	1	2	3	4	5	6	7	8	9	10	11	12
	Beam data library measurement														
GTR2	Commissioning & validation														
	Patient treatment														
	Treatment room Acceptance test														
	Beam data library measurement														
GTR3	Commissioning & validation														
	Patient treatment														
	Treatment room Acceptance test														
FBRT	Beam data library measurement														
	Commissioning & validation														

Treatment Planning System Issue

- Limited vendors and just enough support for a proton treatment planning
- Proton Therapy system has a complicated beam nozzle configuration and delivery option (Too many machine dedicated parameters on TPS).
- Compatibility issues among TPS, OIS and TCS. (Treatment beam parameters, Patient setup images, Aperture & Compensator data).

Proton Treatment Planning Systems

Varian, Eclipse (version 10.x, OIS - ARIA)
 : Scattering mode / Scanning mode

2. Elekta, XIO (v4.64, OIS-MOSAIQ) : Scattering mode/ Scanning mode

3. Ray Search Laboratories, RayStation: Scattering mode/ Scanning mode (under development)

4. Home made TPS for eye treatment

5. Etc..

Prerequisites and Necessary tools for Beam Commissioning

Prerequisites

- > The beam calibration is done by the machine vendor.
- > The treatment control system is configured with the accurate beam parameters
- The dose monitoring system is calibrated to deliver one cGy per Monitor Unit (MU) in the reference field conditions. This task is the responsibility of a medical physicist.
- > The treatment Room acceptance tests are passed by a medical physicist.

Necessary Tools

- Dosimetry tools
 - The 3D Water phantom and its associated software.
 - Ion chambers (parallel plate IC & Cylindrical IC) or diode detector
 - Multi-layer Ionization chamber
 - Electrometer.
 - Film
- Treatment beam parameter converting sheet for the treatment room (ex. ConValgo/WobAlgo for IBA PT system)
- > Apertures with various sizes
- Spirit level, Ruler, Barometer & Thermometer.

Beam modeling on Eclipse TPS

Beam data required

- 1. Depth dose curve \rightarrow Depth dose
- 2. Half beam block profile \rightarrow Lateral penumbra
- 3. Beam fluence along Z axis \rightarrow Effective SAD
- 4. Open field cross profiles \rightarrow Virtual SAD
- 5. Depth dose and Z fluence \rightarrow MU calculation
- 6. Cross profiles of spot fluence \rightarrow Phase space

Nozzle Stucture (Water Equivalent Thickness)

- 1. Scatterers
- 2. Range modulators
- 3. Other parts on the beam path way

Field size, Range option, Aperture & Comensator, etc.

Example of Range Option

Double Scattering

Option	B1	B2	B3	B4	B5	B6	B7	B8
Range (cm)	4.6- 5.87	5.78- 7.49	7.49- 9.55	9.55- 11.65	11.65 _ 15.54	15.54 _ 19.83	19.83- 23.91	22.8 _ 28.2
SOBP (cm)	5.87	7.49	9.55	11.65	15.54	15.6	18	20.7 5
Field size (Φ cm)	12	12	11	11	11	11	11	7

Uniform Scanning

Option	Option1	OPtion2	Option3	Option4			
Range (cm)	3.5-12	12-18	18-26	26-32.5			
SOBP (cm)	0.35-12	0.45-18	0.55-26	0.6-32.5			
Field size	30X40						

Example of Beam Data Measurement

Per Option the following curves need to be measured								
Туре	# Energies	# Position	# NET	Total				
Depth dose curves (in water)	5	1 (Central axis)	1	5				
Z Fluences (in air)	5	1 (Central axis)	3-5	15-25				
X Profiles (in air)	5	4 (Z=+150mm,0mm,- 150mm and 300mm)	1	20				
Half blocked profile (in air)	5	4 (Z=+150mm,0mm,- 150mm and 300mm)	3-5	60-100				
			Total	100-150				

150 measurement/option * (DS:8+SS:6+US:4) options = 2,700 measurements

Proton Beam Measurements

- Output measurement (TRS 398)
 - Reference chamber : Farmer type
 - Small Field size : Pinpoint chamber
- Profile measurement
 - PDD, Distal Penumbra : Markus Chamber, MLIC
 - Lateral Penumbra : Pinpoint Chamber, Diode detector,

Film (X-Omat, EDR2, and EBT)

Dosimetry Devices I

Dosimetry Devices II

There are several tools, useful for scanning beam.

Some of them are essential and others can save your beam data measurement time.

Ex.) MLIC, Scintillation Plate type detector, 2D Array type Ionization Chamber, Large size PP type chamber, etc.

Snout Position and Tray Distances

TPS Validation Test: PDD Comparison (DS)

NcLaren

TPS Validation Test: PDD Comparison (US)

TPS Validation Test: Lateral Penumbra

McLaren

Dose Uncertainties in Proton Therapy

- Conversion from Hounsfield numbers to electron density does not exactly match with proton stopping power.
- Materials with different relative stopping power can have the same CT numbers.

Phantom	Density	Electron Density	Proton SP
CB2-50	1.560	1.470	1.431
LN-300	0.280	0.273	0.273
Adipose	0.941	0.924	0.949
LN-450	0.450	0.437	0.445
B-200	1.153	1.105	1.110
CB2-30	1.334	1.279	1.267
water	1.000	1.000	1.000
Brain	1.053	1.049	1.061
Breast	0.979	0.956	0.963
Solid water	1.017	0.988	1.004
Liver	1.094	1.062	1.070
Inner Bone	1.144	1.097	1.084
Cortical Bone	1.824	1.696	1.610

Daily Morning QA with PMMA Phantom

Snout 100, Snout 180

PTW30013 type ion chamber - Located at 10cm depth

Relative SP 1.158

Optimize Beam condition Range : 14.07 cm SOBP : 5 cm

Calibration Results

Monthly QA Compensator Accuracy

てつろうけん

			Machine dat	a	Compensator						
	@220.5 (cm)	@230.0 (cm)	Norm. Diverg.	Design (mm)	Excl. Tool	Incl. Tool	Diff. (mm)	Upper	Lower	Diff. (mm)	Diverg. (deg.)
W1	24.2	25.3	1.0022727	20	19.2	24.2	0.0	24.7	23.8	-0.4	1.43
W2	33.7	35.1	0.9985228	30	28.8	33.8	-0.1	35.0	33.8	0.0	3.55
W3	43.2	45.2	1.0030797	40	38.3	43.3	-0.1	45.4	43.0	-0.3	3.42
H1	24.3	25.3	0.9981481	20	19.2	24.2	0.1	25.0	23.5	-0.7	2.39
H2	33.5	35.0	1.0016223	30	28.8	33.8	-0.3	34.8	33.0	-0.7	4.89
H3	43.3	45.1	0.9985491	40	38.3	43.3	0.0	45.5	43.0	-0.3	3.60
										공구 경사감	3.00

Monthly QA: X-ray alignment GTR1

Gantry Coord DIPS		DIPS	l	sodose = 309	6	Isodose = 50%					
angle	Coold.	(Rad A)	Field	Metal Ball	Diff.(mm)	Field	Metal Ball	Diff.(mm)			
0	Хо	-0.046	31.35	31.35	0	31.4	31.2	-0.2			
0	Yo	0	0.15	0.35	0.2	0.15	0.5	0.35			
00	Хо	0.046	34.15	33.55	-0.6	34.15	33.65	-0.5			
90	Yo	0	0.9	1.4	0.5	1.1	1.3	0.2			
190	Хо	-0.046	33.05	32.2	-0.85	33.05	32.2	-0.85			
160	Yo	-0.046	0.5	0.25	-0.25	0.45	0.2	-0.25			
270	Хо	0	34.9	34.45	-0.45	35	34.4	-0.6			
	Yo	0.046	-0.1	0.25	0.35	-0.05	0.2	0.25			

Test Pattern

Initiated by Jay Flanz. Developed originally as an acceptance test pattern via a collaboration between IBA, MGH, ProCure, Florida, Orsay, Essen, and

J. McDonough, 2012

Patient Treatment QA

- Field Calibration
 - Range & SOBP: Water Phantom, MLIC
 - Output: TRS398, Farmer Chamber
- 2D dose distribution comparison:
 Measurement in 3D water phantom & TPS Dose calculation

Beam Parameter Converting Algorithm (Convalgo)

- IBA provides the converting Algorithm for a beam delivery conditions

- However, it is not enough for our clinical beam delivery tolerance! McLaren
Example of Patient QA Plan

Patient QA Procedure

Treatment Planning → Range, SOBP, Dose calculation → MU calculation accuracy (??)

Tolerances for Tx.

- Range : 1~2 mm
- Output : 3%

Beam Parameter Generation

Fine-tuning the beam parameters to give the planned beam conditions

SOBP Range

Time consuming job : ~ 2hrs/patient

Beam Measurement

DB based Prediction for Output Factor, Range, and SOBP

Range

B8 Range

Measured Bange (cm

24 24.5 25 25.5 26 26.5 27

- * PMB, 50 (2005), p5847-5856
- \rightarrow Patient QA can be covered by the DB based prediction methods.
- \rightarrow used for the independent check of QA.

McLaren Proton Therapy Project

Architectural rendering for MPTC and MCI

Total Construction = 52,434 SF MPTC new construction = 42,093SF MCI renovations = 10,341 SF

Space Layout for the MPTC

• Compact synchrotron and three 180° isocentric gantries

- IGRT using CBCT, CT-Sim and PET-CT imaging modalities
- Treatment set-up room external to the treatment rooms

McLaren Project schedule

- Contract signing with Equipment Vendor: 3/12/10
- Contract signing with Design-Build Team: 7/6/10
- Building ready for Equipment Installation: 7/1/11
- Major equipment Installation Complete: 7/20/12
- Technical Commissioning Completed: 11/30/12
- Acceptance Tests Complete: 12/16/12
- Clinical Commissioning Completed and First Treatment Begins: 3/12/2013

Selected McLaren Specifications

- Pencil beam scanning for IMPT and SFUD
- $\Delta E/E$ of beam at extraction: $\leq 0.2\%$
- Maximum treatment field size: 40 cm x 30 cm
- Beam penetration: 4 37 g/cm²
- Spot sizes in air at isocenter (1 σ): 3 mm to 7 mm
- Beam spill length (flat top): 0.1 to 5 s
- Time between beam spills: ~ 1 s
- Beam intensity: variable within spill. DR ~10:1
- Time to treat 0.5 liter volume to 2 Gy: \leq 1.5 m
- CBCT for image-guided setup and verification
- Proton Tomography to be developed

ProTom International Scanning Optimized Synchrotron

Total weight = 15 tons 4.9 m diameter

> 70 – 250 MeV for treatments 330 MeV for Proton tomography Variable extraction sequence Variable intensity

ProTom International Isocentric Gantry

180 degree rotation coupled with robotic patient positioner provides complete 360 degree treatment beam entry angles for patient treatments.

McLaren Proton Therapy Center Flint, MI

McLaren Proton Therapy Center Front Lobby

Hospitality House

- Designed for Patients and Caregivers
- Most patients will travel an hour or more to Flint for Proton Therapy
- Long-term stays, typically 6 8 weeks
- The Hospitality House will be a non-profit
 - Room fees would be in the form of suggested donation (\$35 per night)
- 20 30 guest rooms
- About 38,000 square feet

Summary

- The commissioning of a Proton therapy system is very time consuming work and requires good understanding of the system.
- It is a big issue to deal with the limited beam time and man-power (other room beam calibration, maintenance, patient treatment and machine/patient QA, etc.).
- There is a need to develop the standard QA program for proton therapy. => AAPM TG 224

