Quality and Safety Issues Associated with Proton Beam Therapy

Indra J. Das, PhD, FACR, FASTRO Department of Radiation Oncology Indiana University of School of Medicine, Indianapolis, & IU Health Proton Therapy Center Bloomington

Name Change (2011)

Midwest Proton Radiotherapy Institute (MPRI)

Indiana University Health Proton Therapy Center (IUHPTC)

Same location, Same people, same machines

Safety & Quality Issues

- Machine (Cyclotron, Synchrotron)
- Beam line
- Bending magnets
- Energy Selector
- ✤ Nozzle
- Treatment table
- Patient specific devices

Ernest Lawrence Nobel Prize winner in Physics 1939

Types of Machines: Variable Design (Specific QA and Safety)

*	Home grown (Cyclotron)
	☐ Indiana university
*	Loma Linda (only one of its kind): (Synchrotron)
*	IBA (Cyclotron)
*	Hitachi (Synchrotron)
*	Mitsubishi (Synchrotron)
*	Sumitomo (Cyclotron)
*	ProTom (Compact Synchrotron)
*	Mevion (Superconducting Synchrocyclotron)

Machine: Cyclotron

Excel, Varian

IBA

Щ UNIVER

Synchrotron: Ion beam (H⁺, He²⁺, C⁶⁺, O⁸⁺) Heidelberg, Germany (120 m)

Beam Line Components (IUHPTC)

IUCF/IUH Proton Therapy System

Double Scattering in Fixed Beam Line (TR1); Under Upgrade

Rudimentary, needs periodic OA of every component

Types of Beams

IUH PTC Beam Line

SOBP Redistribution

W INDIANA UNIVERS

Samples of Propeller Wheel Modulator

SOBP wheel range from 2.3-16 cm QA issues with wheel

Ridge Filters for SOBP

Grating Ridge Filter

Propeller wheel modulator Spiral Ridge filter Ridge Filter

Kostjuchenko, Nichiporov, Luckjashin; Med Phy, 28, 1427, 2001

IU Health Proton Therapy Center, Proton Gantry

1

Ş......

1 RPM

A

Braking system within 1 deg

COLUMN ST

10110

Nozzle with a Scanning Magnet at IUHPTC

Uniform Scanning (IUHPTC)

Nozzle with a Scanning Magnet

One Layer

Scan Parameters

- SAD 250 cm both x & y directions
- Spot size (FWHM) 12-15 mm circular diameter
- Frequency 5-16 Hz (horizontal), 144
 Hz (vertical) and ratio changes 5-15
- Over scan is 3 cm for optimum uniformity

Uniform Scanning and Energy Stacking Method

Binary Range Modulator

6 Plates 2 Lucite plates 4 Graphite Plates Water equivalence 3, 6, 12, 24, 48 and 96 mm

SOBP Creation Using Range Modulator

SOBP files = Propellers
Library 1 → 4-12 cm range in water
Library 2→ 12-20 cm range in water
Library 3 → 20-27 cm range in water

Each library contains SOBP files

Frequency distribution of monthly faults at IUHPTC, 2009

Frequency distribution of monthly faults at IUHPTC, 2009

Machine Specific QA (No guidelines)

Daily

**

- Image: Image and the second second
- Image: Image of the second symmetry (Matrixx)
- Image: Image Absolute dose
- Image: Radiation Safety

Needs guidelines similar to TG-142

- Monthly
 - ¤Beam line
 - Image: Flatness and Symmetry in 10, 20, 30 cm diameter snout

U

INDIANA UNIVERS

- Image: Image and the second second
- ImageRange (Low, Medium and High) using MLIC

Quarterly (optional of site dependent)

- ¤ Mechanical
- □ Selected QA, gantry and imaging system
- Image: Image and the second second

Annual

- ¤ Comprehensive
- Image: Image of the second s
- Image: Image of the second s

Mechanical Isocenter Check

Ψ

Isocentricity by Film

U INDIANA UNIVERSI

Linearity vs PDM Gain (Volt)

TR3 CVOLT Linearity Vs. Markus Ion Chamber Charge

CVOLTS (V)

Dose Monitor Linearity

TR3 Ion Chamber Charge vs. DDS Requested MU (Constant Dose Rate)

Parameter Reproducibility

Angular Dependence

Patient Support System

Treatment Table & Robotic systems QA

Dose Delivery and Measurement

- Dose Monitoring Chamber
 - □ Pressure and temperatures dependence
 ■
 - ◻ Sensitivity to gantry orientation
 - High humidity: leakage current and ion recombination
 Dose and dose rate linearity
- Pencil beam scanning specific issues
 - □ Incomplete dose: Restarting error
 - Higher instantaneous beam intensities: Saturation and nonlinearity
 - Dirac On-off between each spot: should be very short to reduce error
 - Motion management is critical

Error Associated with Solid water Phantom

Understand Detector, Connector & Cable

Srivastava et al, Med Phys, 37(6), 3247, 2010

Daily QA Parameters

Date:															
Time: Time Room Ready:															
Alignment Checks Alignment of room las Alignment Checks 2 Snout alignment				hecks		0.00		Evented Or	itaama						
3 Snout position / PPIC 4 X-ray system alignme	1	Aliş	nmer	nment of room lasers at isocenter											
6 Light field alignment Safety Checks	2	Sr	Beam Checks												
7 X-ray system accelere 8 Patient positioner acc	3	Si	1	PPICS, DD	s, BD	S in Dosime	etry M	ode; TRCS ir	n Servic	e Mode	2				
9 Beamline interlocks/s 10 Beamline xray	4	×.	2	DDS motors	s and	LCD backu	p coui	nters working	and rec	ording					
11 Floor panels 12 Barcode scanner	5	G	3	MIRS - Intel Output Que	rlock a lite Ar	and radiatio	n mor	nitoring							
13 Patient distress butto 14 X-ray Collimators	6	Li	21	Output =	iity As	0.998	cGy	/ MU							
16 Camera and room me Beam Checks	Safet	y		RCI1 =		2.175		RCI2 =	2.417		ChamberID =	MatriXX			
1 PPICS, DDS, BDS in 2 DDS motors and LCD	7	X.		CV 1 = DDS:	Pr =	2.078 985.7	Tr =	CV 2 = 20.4	2.315		Cto =	1.0221			
3 MIRS - Interlock and 21 Output Quality Assura	8 P:									Offs =	-0.0504				
Output = 0.95 RCI1 = 2.17	9	Bł	22	Transverse	Quali			_							
DDS: Pr = 9	10	Bł		IP Flatn CP Flatn	ess = ess =	2.05%	6 6	IP Sym CP Sym	metry = metry =	0	0.01%				
22 Transverse Qualit IP Flatness =	11	FI	Roon	n Readine	SS		•								
CP Flatness = Room Readiness	12	Ba	23	Check RAF	Box					Reboo	ot TRCS				
23 Check RAF Box PP at Intm Position	13	13 P		PP at Intm Position			Pendant put away								
Gantry at 270degs Snout retracted	14	x		Snout retra	rudeg sted	2				TRCS	in Treat Mode				
Ap/Comp put away Deleted values in QA	15	A		Bed mech clamped locked DDS in Treat Mode							n Treat Mode				
Comments:	16	0		Ap/Comp p	ut awa	ay OA ahaa'				BDS in	n Treat Mode				
	1 1 1 1	1.774		Deleted Vali	Jes In	QA sheet				LLLC3	o in Treat Mode				

Dose Calibration

MPRI Proton Calibrations - TR1

Ionization Chamber Number =	3				Date: Time:	01-Apr-09 06:21 AM	
Ion Chamber Details							
Chamber Name	Serial Number	Chamber Type	Last Calibrated	N _{DwQ} (Gy/C)	Nk [Gy/C]	Aim	Awall
Markus	3997	Markus	14-Nov-07	5.615E+08	4.984E+08	1	1.003
Electrometer	Electrometer Cal Fact	Ka	Pin	P _{pt}	Sunda:	(μ/ρ) _{sin,mill}	Khan
INNOVEION 35040	1	1.002	1	0.000	1,102	0.925	0.997

Calibration		Measured Data						
Monitor/Room (DDS) Temp =	20.3	'C	RESP. Q	DOSE A	DOSE B	MU-B	TIME	
ion Chamber Chamber temp =	19.2	*C	(nC)	(MU)	(MU)	Fraction	(min)	
Room Pressure (mmHg) =	737.5	mmHg	0.8578	50				
Corrected Room pressure (mmHg) =	734.63	mmHg	0.8809	50	(
Pressure (mBar) =	979.42	mBar				_	-	
Field diameter =	10.00	000	-	-				
Air Gap (cm) =	5.00	om						
SOBP =	10.00	cm						
Ref CVOLT1 =	6.132			A	erage nC/MUA	0.0172	nC/MU _A	
Ref CVOLT2 =	6.503			-				
REF CALIBRATION FACTOR	REF CALIBRATION FACTOR 1.000 cG				OUTPUT	1		
Phantom Number =	1		1	Nowg Based =		1.010	cGy/MU	
Selected Phantom =	Water Phantom			Air F	(erma Based =	1.001	cGy/MU	
Phantom Factor =	1			Avera	ge Dose Rate =	#DIV/01	MU/min	
R90% Range =	15.85	cm			TRS 398 =	0.990	cGy/MU	
Depth of Detector =	11.00	cm		OUTP	UT FACTOR =	1.001	1 (
Detector Position (IP;CP)	CAX	om		CVOLTS (Set o	on DMCs)	CVOLT1	= 5.962	
Distal 10 % on BRAGG Peak =	16.350	cm		Ptp DMC =	1.029	CVOLT2	= 6.322	
COMMENTS		÷		0.00				
MORNING QA			Signed: updated 3/26/00 M	RR/BA	D)ate:	01-Apr-09	

C:\Documents and Settings\MPRI/Desktop\Master Cal Sheet Bar Correction V4.5 - TR1.xis4/1/2009

TRS-398 (New protocol)

Proton Calibrations TR2							
Calibration Data							
Ionization Chamber Number =	3						
Chamber	<i>PTW 23343</i>		MEASURF	ED RESPON	SE RA	ATE (MU/mir	100
Serial Number	3997		Q	DMC A	DMC B	DMC B	TIME
Туре	Markus		(nC)	(MU)	(MU)	FRACTION	(min)
Last Calibrated	7-Nov-07		1.729	100	99.8		1
			1.7267	100	99.8		1
NDwQ (Gy/)	5.615E+08						
k-Q	1.002						
k-ion (k-s)	1.002						
k-pol	1.001						
k-elec >> Verify for Electrometer <<	1.000						
Temperature at Barometer =	21.7	°C					
Water Phantom Ion Chamber Temp =	19.5	°C					
Barometer Pressure (mmHg) =	744.8	mmHg	Av	Average nC/MU A:			
Corrected Barometer Pressure (mmHg	741.7	mmHg					
Pressure (mBar) =	988.8	mBar			TRS 398	0.991	cGy/MU
k-t,p (field chamber)=	1.016						
REF CALIBRATION FACTOR	1.000	cGy/MU		OUTPUT F	ACTOR	0.991	
Field diameter OR Name =	10	cm					
Air Gap (cm) =	5	cm					
SOBP =	10	cm					
R90% Range =	15.8	cm	Ref CVOL	ГS	CVOLTS (S	Set on DMCs)
Depth of Isocenter	11	cm	Ref RCI1 =	= 2.044	CVOLT1=		
Depth of Detector =	11	cm	Ref RCI2 =	= 2.439	CVOLT2=		
Detector Position (IP;CP)	CAX	(cm, cm)					

UNDIANA UNIVERSI

TR 2,3 Radiation Survey Map

Neutron Safety

Facility	H ₂ O range (cm)	Field size	SOBP (cm)	Off axis distance (cm)	Neutron (mSv/G
HIMBC wobbling (Yonai et al., Ref. 28)	27	$5 \times 5 \text{ cm}^2$	6	50	1.15
HIMBC wobbling (Yonai et al., Ref. 28)	16	$5 \times 5 \text{ cm}^2$	6	50	0.5
MPRI, U-scan (this experiment)	27	10 cm diam	10	40	0.97
MPRI, U-scan (this experiment)	16	5 cm diam	10	40	0.5
MPRI, DScatt (this experiment)	16	10 cm diam	10	40	0.8
Tsukuba, DScatt (Tayama et al., Ref. 6)	15.5	$11 \times 11 \text{ cm}^2$	10	40	1.0
Harvard, DScatt (Yan et al., Ref. 2)	16	$5 \times 5 \text{ cm}^2$	8.2	50	4.8
LomaLinda, DScatt (Moyers, Ref. 9)	30	14 cm diam	Pristine	55	1.96
PSI, spot scan (Schneider et al., Ref. 16)	20.7	$10 \times 10 \text{ cm}^2$	10	50	0.08

Hecksel et al, Med Phy, 37, 1910-1917, 2010

Patient Specific QA

- Aperture
- Compensator
- Automatic precision measurements
- ✤ CMM at least 10% of the data
- Manual check at least 4 points
- ✤ Measure
 - ⊐ The range with MLIC
 - ¤ Uniformity
 - Dose if needed or use mathematical model

 - □ Use proper correction

Proton Snout, sizes, 10, 20, 30 cm diameter

Lucite Compensator

Snout latch

- Brass Aperture
- 1. Accuracy
- 2. Weight
- 3. Composition

- 1. QA on depth and fidelity of drilling
- 2. Minimum thickness of integrity
- 3. Quality of plastic (vendor variability)
- 4. Safety: Mechanical attachment issue

MLIC: Multi-Layer Ion Chamber

Multichannel detectors for profile measurements in clinical proton fields

Dmitri Nichiporov^{a)} and Keith Solberg Indiana University Cyclotron Facility, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408

Wen Hsi, Mark Wolanski, Anthony Mascia, and Jonathan Farr Midwest Proton Radiotherapy Institute, 2425 Milo B. Sampson Lane, Bloomington, Indiana 47408

Andries Schreuder ProCure Treatment Centers, Inc., 115 North College Avenue, Suite 210, Bloomington, Indiana 47404

- Polystyrene plates with a 6 mm diameter signal spot
- Plates, 16 cm x16 cm, are separated with
 1.0 mm air gaps
- ✤ 122-channel
- Total water-equivalent depth of the detector is about 220 mm
- Can be used with different gas

Nichiporov et al, Med Phys, 34, 2683, 2007

NDIANA UNIVER

Dose Calculation & Modeling

- Patient specific measurements
 - ¤ Manpower
 - Accuracy limited to point selection
 - \square Open vs closed (with compensator)
 - Model based
 - **MGH:** Kooy *et al. Phys Med Biol* 2005;50:5847-5856.

IDIANA UNIV

- **MDA:** Sahoo *et al. Med Phys* 2008;35:5088-5097.
- **IU:** Zhao *et al. Phys Med Biol* 2010;55:N87-95.

TPS

- ⊐ Work in progress
- Monte Carlo
 - ⊐ Work in progress

Phys. Med. Biol. 55 (2010) N87-N95

PHYSICS IN MEDICINE AND BIOLOGY

doi:10.1088/0031-9155/55/3/N02

NOTE

A sector-integration method for dose/MU calculation in a uniform scanning proton beam

Qingya Zhao^{1,2}, Huanmei Wu³, Mark Wolanski¹, Daniel Pack¹, Peter A S Johnstone^{1,4} and Indra J Das^{1,4}

¹ Midwest Proton Radiotherapy Institute, Bloomington, IN, USA

² School of Health Sciences, Purdue University, West Lafayette, IN, USA

³ Purdue School of Engineering and Technology, IUPUI, Indianapolis, IN, USA

⁴ Department of Radiation Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA

E-mail: qzhao@mpri.org

Received 6 October 2009, in final form 30 November 2009 Published 7 January 2010

MU Calculation Model

INDIANA UNIVERSI

Error Estimation in Model

Dose monitoring and output correction for the effects of scanning field changes with uniform scanning proton beam

Qingya Zhao^{a)}

IU Health Proton Therapy Center (IUHPTC, formerly known as Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 and School of Health Sciences, Purdue University, West Lafayette, Indianapolis, Indiana 47907

Huanmei Wu

Purdue School of Engineering and Technology, IUPUI, Indianapolis, Indiana 46202

Chee-Wai Cheng and Indra J. Das

IU Health Proton Therapy Center (IUHPTC, formerly known as Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 and Department of Radiation Oncology, School of Medicine, Indiana University, Indianapolis, Indiana 46202

Extracameral Effect in Scan Dose Monitoring

Zhao et al, Med Phys, Vol. 38, No. 8, 4656-61, 2011

Waste (Radioactive)

Radioactive storage issue

Radiation exposure

Neutron dose to patient

MLC

- Das I, Akagi T, Kagawa K, et al. Geometric and dosimetric characteristics of a proton beam multileaf collimator (MLC). Med Phys 2004;31:1797 (abs)
- Diffenderfer ES, Ainsley CG, Kirk ML, et al. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system. Med Phys 2011;38:6248-6256.
- Moskvin V, Cheng CW, Das IJ. Pitfalls of tungsten multileaf collimator in proton beam therapy. *Med Phys* 2011;38:6395-6406.

Safety & Quality Issues in Rx

- Treatment processes
 - ⊐ Immobilization
 - □ CT-scan (CT-RED and RSP)
 - Image: Planning (algorithms)
 - ⊐ PSD fabrication
- Treatment
 - ¤ Setup
 - ⊐ Imaging (target localization)
 - DIPS
 - CBCT
 - CT on rail
 - PET
 - Other

U INDIANA UNIVERSI

Closing Note

- Beam parameters in scattering and scanned beam may be machine, vendor and treatment room specific that should be periodically checked
- Daily, Monthly, Quarterly and annual QA
- Patient specific QA include range, flatness, absolute dose and Dose/MU
- Changes in beam current and its implication in dosimetry should be evaluated including extra cameral effect Patient Specific QA along with model
- Safety, mechanical and radiation check at periodic interval
- Continuous quality check on PSD
- Interlock and warning signs must be respected

Chee-Wai Cheng **Chris Allgower** Mark Wolanski Li Zhao Leia Fanelli Archana Gautam Len Coutinho **Brian Allen** Ryan Reed Vadim Moskvin **Dmitri Nichiporov** Vladimir Derenchuck

http://iuhealthprotontherapy.org/about/staff/medical-physics-team/

kekmowiee gements