Planning Constraints for Paraspinal Volumetric Modulated Arc Therapy

Kelly Younge, Ph.D
Don Roberts, Benedick Fraass, Daniel McShan, and Martha Matuszak
University of Michigan, Department of Radiation Oncology,
Ann Arbor, Michigan
June 16, 2011
Paraspinal VMAT Overview

- Treatment delivery with simultaneous gantry rotation
- VMAT is an intuitive treatment option for paraspinal cases
- Gives comparable dose distributions in a significantly reduced treatment time
- Small target volumes can lead to irregular apertures with dosimetric uncertainty
- Must ensure dosimetric deliverability
Aperture comparison: 3DRT

- 3D conformal treatment plan with regularly shaped beam apertures

Distances in cm
Aperture comparison: VMAT

- VMAT optimized beam apertures can be very irregular
 - Optimizer only concerned with cost of cost functions
 - Narrow openings, non-contiguous regions

Distances in cm
Other VMAT Apertures

- Irregular apertures occur even for large target volumes
- Side-effect of inverse planning

Fog et al. showed that open apertures defined by two MLC leaves (0.25 mm width each) underestimated maximum dose by over 20%.

- Penumbra width (10-90% width) overestimated by ~100%.
- Similar results in two leaves covering the center of a field.
Goal: Improve deliverability of plans by preventing the optimizer from generating fields known to result in unacceptable error

- Develop metrics to predict error based on aperture shape
- Incorporate metrics in a cost function that penalizes undesirable aperture shapes
Methods: Treatment Planning

- Treatment Planning
 - UMPlan
 - Direct Aperture Optimization and field weight optimization
 - New Edge algorithm, 1 mm grid size
 - 2 paraspinal VMAT plans for each of 5 patient cases
Methods: Dosimetry

- Measurements
 - Measured dose for 23 apertures from one example case
 - Measured 15 rectangular apertures of varying area and aspect ratio

- Dosimetry
 - Kodak EDR film planar measurements in solid water
 - Verification of film measurements for 15 rectangular fields by measuring dose profiles with scanning stereotactic diode in Wellhofer Blue Phantom water tank
Methods: Dose comparison

- Dose Comparison
 - Image registration to maximize agreement
 - Pixels with at least 5% of maximum dose analyzed
 - $\% \text{ deviation} = \frac{\text{Calculation} - \text{Measurement}}{\text{Max Dose}}$
 - Dosimetric error quantified by % of pixels with greater than 5% deviation

- Correlation methods
 - Aperture area
 - Perimeter/aspect ratio
 - Edge erosion technique
Maximum dose range for all apertures tested: 50 – 70 cGy
Dose difference: Calc - Meas
• Edge error on MLC leaf sides:
 • No compensation for tongue on MLC
 • 11-17% deviation as a percent of maximum dose
• Edge error on MLC leaf ends:
 • Rounded edge of leaf end is better modeled in the planning system
• 0-5% deviation as a percent of maximum dose
Dose calculation errors

- Error in small open areas:
 - 4-11% deviation as a percent of maximum dose
Dose calculation errors

- Leakage between closed MLC leaves:
 - ~22% deviation as a percent of maximum dose
Assessment of dosimetric error

- Errors of small irregular fields occur because we cannot model all parameters of each field perfectly
- What can we learn from looking at these dose deviations?
 - Areas where dose calculation algorithm can be improved
 - Aperture shapes that should be avoided to ensure plans with optimal deliverability
 - Goal is to increase likelihood of accurate delivery
Assessment of Metrics

Percent of pixels with > 5% dose deviation: 7%
Assessment of Metrics: Area

15 Rectangles: area $\rightarrow 0.4 \text{ cm}^2$ to 20 cm2, aspect ratio $\rightarrow 0.2$ to 5
Assessment of Metrics: Aspect Ratio

15 Rectangles:
- area \rightarrow 0.4 cm2 to 20 cm2,
- aspect ratio \rightarrow 0.2 to 5
Assessment of Metrics: Erosion

Eroded area % = (Expanded-Original)/Original
Correlation with eroded area

Parameters:
- Expand 0.2 cm on leaf end
- Expand 0.05 cm on leaf side

Example expanded area
Correlation with eroded area

Parameters:
- Expand 0.025 cm on leaf end
- Contract 0.025 cm on leaf end
- Expand 0.1 cm on leaf side
- Contract 0.1 cm on leaf side

Eroded area % = (Expanded – Contracted)/Original

Example expanded area
Conclusions

- VMAT is a promising treatment technique, but the accuracy of plans with small, irregular apertures is questionable
 - These inaccuracies can be masked when using distance-to-agreement criteria
- Calculational errors can be better understood by analyzing dose differences
- Edge erosion is a promising metric for identifying undesirable apertures
 - Edge erosion can be used for different dose calculation algorithms if the unique erosion parameters are identified
- Adding a cost function based on aperture shape should help to minimize apertures that will lead to unacceptable error
Acknowledgements - Thanks

- UM Team VMAT
- Jean Moran
- James Balter
- Colleen Fox
Future directions

- Erosion parameters
 - Determine optimal parameters for erosion in x and y
 - Test with other dose calculation algorithms
- Add cost function to optimizer to penalize beams that may lead to large errors
- Compare plans with and without aperture shape cost functions