Sensitivity Analysis for Lexicographic Ordering in Radiation Therapy Treatment Planning

Troy Long¹, Dick Fraass³, Martha Matuszak², Edwin Romeijn¹

¹Department of Industrial and Operations Engineering ²Department of Radiation Oncology ³Cedars-Sianai University of Michigan Ann Arbor, Michigan

> AAPM-GLC June 16, 2011

Outline

- Introduction and Motivation
 - Background
 - Research Questions
 - Lexicographic Ordering
- 2 Methodology
 - Notation and Model Formulation
 - Phase 1: Aperture Pool Generation
 - Phase 2: Tradeoff Curve Generation
- 3 Application
 - Prostate Case Overview
 - Treatment Planning Instance
 - Treatment Plan Assessment
 - 4 Remarks and future research

Background Research Questions Lexicographic Ordering

Treatment Planning

- Dosimetrists create plans for patients, with a number of goals for the treatment outcome of varying importance
- Many models and methods have been developed to measure the quality of a plan's dose distribution
 - Challenge tradeoffs between criteria can be difficult to quantify because some structures are more important than others
 - Tradeoffs are patient specific, making tradeoff identification difficult as well

Background Research Questions Lexicographic Ordering

Research Questions

- What are the tradeoffs between competing objectives in the treatment planning model?
- How can these tradeoffs be calculated efficiently and visualized or communicated in a manner valuable to physicians?

Background Research Questions Lexicographic Ordering

Common Technique to Treatment Planning

- Multi-criteria optimization
 - Many values are used to describe the treatment plan in the model
 - Intuitive when there are many competing objectives
 - Creates a many-dimensional Pareto frontier to realize tradeoffs

Background Research Questions Lexicographic Ordering

Lexicographic Ordering (LO)

- Multi-stage approach
- Uses clinical insights to prioritize treatment planning goals
 - Focuses the computational effort to clinically relevant tradeoffs
- For each stage
 - A Pareto-efficient tradeoff is plotted between competing criteria
 - The planner constrains the more important criteria accordingly, to be controlled for later stages
- Clinically, LO allows for easier interpretation of tradeoff results
- [1] Jee, McShan, and Fraass (2007)

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Notation

- S = set of structures
- T = set of targets
- V_s = set of voxels in structure s
- $K = \text{set of all apertures } (K^* = \text{active apertures})$
- D_{kj} = dose to voxel j from aperture k at unit intensity
- u_s = upper bound on dose to voxels in structure s
- $p_s =$ bound on EUD_s after tradeoff for $s \in S$ analyzed
- α = weighting between structure EUD's, $\alpha \in [0, 1]$

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Decision Variables

- z_i = dose received by voxel $j \in V$
- y_k = intensity of aperture $k \in K$
- $\mathsf{EUD}_s = \mathsf{Linearly}$ -approximated EUD to structure $s \in S$

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Linearly Approximating the EUD

 Equivalent Uniform Dose (EUD) can be approximated using a linear combination of the mean and max dose to the structure (mean and min dose for targets)

$$\mathsf{EUD}_{s} = \gamma_{s} \cdot \frac{1}{|V_{s}|} \sum_{j \in V_{s}} z_{j} + (1 - \gamma_{s}) \cdot \max_{j \in V_{s}} z_{j} \qquad (s \in S \setminus T)$$

$$\mathsf{EUD}_{s} = \gamma_{s} \cdot \frac{1}{|V_{s}|} \sum_{j \in V_{s}} z_{j} + (1 - \gamma_{s}) \cdot \min_{j \in V_{s}} z_{j} \qquad (s \in T)$$

- Motivation
 - The optimization problem can be formulated as a linear program
- [3] Thieke, Bortfeld, and Küfer (2002)

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

General Model for LO Stage i

$$\begin{array}{ll} \min & \alpha \mathsf{EUD}_{s_i} + (1 - \alpha) \mathsf{EUD}_{s_{i+1}} \\ \text{s.t.} & z_j = \sum_{k \in \mathcal{K}} D_{kj} y_k & \forall j \in V \\ & z_j \leq u_s & \forall j \in V_s, s \in S \\ & \mathsf{EUD}_s = \gamma_s \cdot \frac{1}{|V_s|} \sum_{j \in V_s} z_j + (1 - \gamma_s) \cdot \max_{j \in V_s} z_j & \forall s \in S \setminus T \\ & \mathsf{EUD}_s = \gamma_s \cdot \frac{1}{|V_s|} \sum_{j \in V_s} z_j + (1 - \gamma_s) \cdot \min_{j \in V_s} z_j & \forall s \in T \\ & \mathsf{EUD}_{s_j} \leq \rho_{s_j} & \forall s \in T, \quad j \leq i-1 \\ & \mathsf{EUD}_{s_j} \geq \rho_{s_j} & s_j \in T, \quad j \leq i-1 \\ \end{array}$$

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Generating Tradeoff Curves

- Two-phase approach
 - Phase 1 Generate an aperture pool for K*
 - Phase 2 Sequentially solve LO optimization model, only allowing y_k > 0 when k ∈ K*

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Aperture Generation

- Generation goals
 - Generate a set of apertures large enough to produce clinically acceptable plans
 - Limit the number of apertures to keep the computational costs in Phase 2 manageable

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Aperture Generation Process

- We iteratively solve the master problem with aperture set *K**, adding apertures to *K** each iteration *i* using Direct Aperture Optimization (DAO)
- Each iteration, the best aperture per beam is added to K*
 - Adding only the best aperture overall produces less conformal plans
- This process continues until a desired size of K* is reached

[2] Romeijn, Ahuja, Dempsey, and Kumar (2005)

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Generating Tradeoff Curves

- For each stage *i*, there are two tasks:
 - Approximate tradeoff curve by solving the general stage model for various α ∈ [0, 1]

min
$$\alpha \text{EUD}_{s_i} + (1 - \alpha) \text{EUD}_{s_{i+1}}$$

- Select a bound for EUD_{si} by analyzing tradeoff curve for structure si
 - Add constraint $EUD_{s_i} \le p_{s_i}$ for later stages

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Tradeoff Curve Approximation Process

- Goal is to generate a tradeoff curve that is clinically relevant while keeping computational effort to a minimum
- We found that plotting about 8 or 9 strategically positioned solutions for different *α* values was sufficient

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Tradeoff Curve Approximation Example

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Tradeoff Curve Approximation Example

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Tradeoff Curve Approximation Example

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Tradeoff Curve Approximation Example

Notation and Model Formulation Phase 1: Aperture Pool Generation Phase 2: Tradeoff Curve Generation

Selecting a Bound

- The physician examines the tradeoff and then chooses a value, p_{si}, at which to constrain EUD_{si}
- This bound is added to the model for later stages

Introduction and Motivation Methodology Application

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Remarks and future research

Application - Prostate Case

Statistics

- 7 beams
- 796 beamlets
- 44390 voxels, .5cm×.5cm

3d View

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Approximate EUD Parameter γ_s

• γ_s calibrated by comparing approximate EUD to actual EUD values using a clinically acceptable dose distribution for the application case

$$\mathsf{EUD}_{s} = \gamma_{s} \cdot \frac{1}{|V_{s}|} \sum_{j \in V_{s}} z_{j} + (1 - \gamma_{s}) \cdot \max_{j \in V_{s}} z_{j}$$

Structure	PTV	Rectum	Bladder	Femora	PenileBulb
EUD Param	-5	8	7	4	1
γ_{s}	.3	.4	.85	.8	1

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

LO Model Structure

Stage	Primary Structure	Secondary Structure
1	PTV	Rectum
2	Rectum	Bladder
3	Bladder	Femora
4	Femora	Penile Bulb
5	all non-PTV voxels	-

Structure	PTV	Rectum	Bladder	Femora	Penile Bulb
EUD Goal	Max	Min	Min	Min	Min

• *K** has 84 apertures

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Voxel Dose Upper Bounds, *u*_s

Structures	PTV	Rectum	Bladder	Femora	Penile Bulb
<i>us</i> (Gy)	85.5	78	78	85.5	85.5

Other Structures	NT 1.5cm	NT 3cm	Other Normal
<i>u_s</i> (Gy)	83	77	65

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Stage 1 - PTV vs. Rectum

• Minimize $-\alpha EUD_{PTV} + (1 - \alpha) EUD_{Rect}$,

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Stage 2 - Rectum vs. Bladder

• Minimize $\alpha \text{EUD}_{Rect} + (1 - \alpha) \text{EUD}_{Blad}$,

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Stage 3 - Bladder vs. Femora

• Minimize $\alpha \text{EUD}_{Blad} + (1 - \alpha) \text{EUD}_{Fem}$,

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Stage 4 - Femora vs. Penile Bulb

• Minimize $\alpha \text{EUD}_{Fem} + (1 - \alpha) \text{EUD}_{PB}$,

Introduction and Motivation Methodology Application

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Remarks and future research

Dose-Volume Histogram (with chosen bounds)

Introduction and Motivation Methodology Application

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Remarks and future research

Dose-Volume Histogram (strict LO)

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Treatment Planning Results

Priority	Clinical Goals (Gy)	Actual	Strict
0	max _{Rect} < 78	78	78
0	max _{Blad} < 78	78	78
1	min _{PTV} > 73.8	75.8	76.7
2	mean _{Rect} < 40	31.8	34.8
2	mean _{Blad} < 50	20.7	22.3
3	min _{PTV} > 77.7	75.8	76.7
4	max _{Fem} < 45	56.3 (mean _{Fem} = 25.0)	48.6
4	mean _{PB} < 52.5	46.4	48.5
4	max _{PB} < 77.7	84.0	85.5

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Isodose Lines (84 Apertures)

Prostate Case Overview Treatment Planning Instance Treatment Plan Assessment

Isodose Lines (161 Apertures)

Concluding remarks

- Exploring stage-by-stage tradeoffs can help identify beneficial treatment plan alterations
- This process can be especially useful in cases with critical structures overlapping with targets
- This focuses computational effort efficiently

Future Research

- Apply technique to other regions with more impacting tradeoffs
- Study alternate means of tradeoff calculation and presentation
 - Multiple tradeoffs per stage
 - Comparing everything to PTV coverage
- Other aperture pool generation techniques
- Using GPU techniques to quicken tradeoff curve drawing process

Acknowledgements

 Thanks to Dr. Randy Ten Haken, Dr. Mary Feng, Dr. James Balter, Dr. Dan McShan, and Dr. Jean Moran for their insights and contributions.

References

- K.-W. Jee, D.L. McShan, and B.A. Fraass. Lexicographic Ordering: Intuitive Multicriteria Optimization for IMRT. *Physics in Medicine and Biology* 52 (2007), 1845–1861.
- [2] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey, and A. Kumar. A column generation approach to radiation therapy treatment planning using aperature modulation. *SIAM Journal on Optimization* 15:3 (2005), 838–862.
- [3] C. Thieke, T. Bortfeld, and K.-H. Küfer. Characterization of Dose Distributions Through the Max and Mean Dose Concept. Acta Oncologica 41 (2002), 158–161.

Dose-Volume Histogram (with chosen bounds), full

Troy Long¹, Dick Fraass³, Martha Matuszak², Edwin Romeijn¹

Sensitivity Analysis for LO in Radiotherapy Treatment Planning

Dose-Volume Histogram (strict LO), full

Troy Long¹, Dick Fraass³, Martha Matuszak², Edwin Romeijn¹

Sensitivity Analysis for LO in Radiotherapy Treatment Planning