Using Breast Density as an Indicator of the Side Effects and Change Induced by Tamoxifen and Radiation Treatment for Ductal Carcinoma in Situ

Sean Boyer
What is Ductal Carcinoma In Situ?

• DCIS is the *precursor* lesion for most invasive breast cancer
• $\frac{1}{4}$ of DCIS will lead to Breast Cancer
Radiation Side Effects

- Breast Appearance
- Skin
- Fatigue
- Fibrosis
- Edema
Breast Imaging

- MRI
- Mammography
- UST

In mammography, each breast is compressed horizontally, then obliquely and an x-ray is taken of each position.
Breast MRI

• Pros:
 – Tissue Contrast
 – Resolution
 – Safety
 – Not affected by density

• Cons:
 – Cost
 – Time
Mammography

• Pros:
 – Low Cost
 – Low Radiation
 – “Gold Standard”

• A Few Problems
 – Subjective
 – Ionizing Radiation
 – Too many false positives
Consequences of False Positives

- Unnecessary biopsies lead to
 - Wasted Time
 - Wasted Money
 - Unnecessary anxiety
Ultrasound Tomography

• Pros:
 – Short scan time
 – Great resolution / tissue contrast
 – Low cost
 – No ionizing radiation

• Cons:
 – ...?
UST vs. MRI Comparison
Breast Density

• Why does breast density matter?
 – Breast density is strongly associated with an increased risk in breast cancer
 – Mammography is more difficult with dense breasts
Does Breast Density Change During Treatment?

- Tamoxifen
- Radiation?
 - Recall: Edema, Fibrosis, etc...
Results

- One Patient’s Experience:
Sound Speed Percentage vs Time by Patient on Tamoxifen

- 331_L (Post Rad, TAM)
- 331_R (TAM)
Conclusion

• Need more data!
• We *can* detect changes in breast density in the time it takes to treat the patient
• Results look promising
Sound Speed -> Breast Density

- \(c = \sqrt{C/\rho} \)
- \(C \propto \rho^3 \)
- Combining equations...
 - \(c \propto \rho \)